Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference

Lü Hao You Kai Lan Yan-Yan Gao Dong Zhao Qiu-Ling Wang Xia

Citation:

Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference

Lü Hao, You Kai, Lan Yan-Yan, Gao Dong, Zhao Qiu-Ling, Wang Xia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Micro-nano photonic structures, such as meta-materials and photonic crystals, having special effects on light generation, transmission, detection and sensing on a submicron scale, play an increasingly significant role in optical information fields. Micro-nano photonic structures have great potential applications in surface laser emission, optical waveguide and high-Q laser. There are several methods to fabricate micro-nano photonic structures, including laser direct writing, electron beam direct writing, electrochemical corrosion, and holographic lithography and so on. Holographic lithography employs multi-beam interference to generate periodic patterns and records them on photosensitive materials to form typical structures. What is more, it has advantages of low cost, large area and high efficiency. However, there are still some challenges in fabricating typical micro-nano photonic structures, especially the precise optical alignment, beam polarization and control of the details of local interference pattern. A specially designed prism is employed in this work and we propose a compact symmetry-lost setup with the rapid adjustment of beam configuration and polarization. Based on the theory of multi-beam interference, symmetry-lost four-and five-beam interference with different polarizations are simulated. By changing the combination of beam configuration and polarization, novel two-dimensional micro-nano photonic structures can be achieved. The variations of azimuthal angle and polarization of beam in symmetry-lost system affect the wave vector difference, and thus changing the lattice shape and structure contrast. Branch-like and wave-like structures are generated by symmetry-lost four beams with polarizations of (90, 90, 90, 90) and five beams with polarizations of (90, 90, 90, 90, 0), respectively. An appropriate threshold is selected in simulation, such that the intensity data larger than the threshold are removed, while the smaller data are remained, which is transformed into an optical lattice pattern. The interference structures show different morphologies and structural contrasts, and have a period of several hundred nanometers. In experimental fabrication, a top-cut hexagonal prism is used to generate two-dimensional micro-nano photonic structure on CHP-C positive photoresist by single exposure. The intensity of each beam is about 18-20 mW, and the incident angle is 42. The beam polarization is adjusted by rotating a half waveplate inside the holes of the mask and structure volume fraction is determined by exposure dose controlled by beam intensity and exposure time. The scanning electron microscope images of the samples show good agreement with simulation results. This study could provide an effective method of fabricating novel photonic structures, which can be used as templates of fabricating different types of metal lattice structures, thereby promoting the development and applications of novel photonic devices.
      Corresponding author: Wang Xia, phwangxia@163.com
    • Funds: Project supported by the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J14LJ06), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014FP012), and the National Natural Science Foundation of China (Grant Nos. 11274189, 11504194).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [6]

    Driscoll T, Basov D N, Starr A F, Smith D R 2006 Appl. Phys. Lett. 88 081101

    [7]

    Yang Y, Li Q, Wang G P 2008 Opt. Express 16 11275

    [8]

    Li Z, Zhao R, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901

    [9]

    Phan A H, Piao M, Park J H, Kim N 2013 Appl. Opt. 52 2385

    [10]

    Rill M S, Plet C, Thiel M, Staude I, Freymann G V, Linden S, Wegener M 2008 Nat. Mater. 7 543

    [11]

    de Vittorio M, Todaro M T, Stomeo T, Cingolani R, Cojoc D, Fabriziob E D 2004 Microelectron. Eng. 73-74 388

    [12]

    Birner A, Grning U, Ottow S, Schneider A, Mller F, Lehmann V, Foell H, Gsele U 1998 Phys. Status Solidi A 165 111

    [13]

    Campbell M, Sharp D N, Harrison M T, Denning R G 2000 Nature 404 53

    [14]

    L H, Chu C X, You K, Zhao Q L, Wang X 2017 Optik 140 25

    [15]

    Shen K, Jiang G, Mao W, Baig S, Wang M R 2013 Appl. Opt. 52 6474

    [16]

    Jimnez-Ceniceros A, Trejo-Durn M, Alvarado-Mndez E, Castao V M 2010 Opt. Commun. 283 362

    [17]

    Wang J L, Chen H M 2007 Acta Phys. Sin. 56 922 (in Chinese) [汪静丽, 陈鹤鸣 2007 物理学报 56 922]

    [18]

    Nian X Z, Chen H M 2009 Opt. Laser Technol. 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [19]

    Zeng J, Pan J Y, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2785 (in Chinese) [曾隽, 潘杰勇, 董建文, 汪河洲 2006 物理学报 55 2785]

    [20]

    Pan J Y, Liang G Q, Mao W D, Wang H Z 2006 Acta Phys. Sin. 55 729 (in Chinese) [潘杰勇, 梁冠全, 毛卫东, 汪河洲 2006 物理学报 55 729]

    [21]

    Solak H H 2005 Microelectron. Eng. 78 410

    [22]

    Lai N D, Lin J H, Hsu C C 2007 Appl. Opt. 46 5645

    [23]

    Wang X, Xu J F, Su H M, He Y J, Jiang S J, Wang H Z 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [24]

    Wang X, Tam W Y 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [25]

    Wang X, Wang Z X, L H, Zhao Q L 2010 Acta Phys. Sin. 59 4656 (in Chinese) [王霞, 王自霞, 吕浩, 赵秋玲 2010 物理学报 59 4656]

    [26]

    Zhao Q L, L H, Zhang Q Y, Niu D J, Wang X L 2013 Acta Phys. Sin. 62 044208 (in Chinese) [赵秋玲, 吕浩, 张清悦, 牛东杰, 王霞 2013 物理学报 62 044208]

    [27]

    L H, Zhang Q Y, Zhao Q L, Wang X 2012 Appl. Opt. 51 302

    [28]

    Wang X, Xu J, Lee J C W, Tam W Y 2006 Appl. Phys. Lett. 88 051901

    [29]

    L H, Wang S Z, Wang X 2014 Chin. J. Lasers 41 201 (in Chinese) [吕浩, 王守智, 王霞 2014 中国激光 41 201]

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [6]

    Driscoll T, Basov D N, Starr A F, Smith D R 2006 Appl. Phys. Lett. 88 081101

    [7]

    Yang Y, Li Q, Wang G P 2008 Opt. Express 16 11275

    [8]

    Li Z, Zhao R, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901

    [9]

    Phan A H, Piao M, Park J H, Kim N 2013 Appl. Opt. 52 2385

    [10]

    Rill M S, Plet C, Thiel M, Staude I, Freymann G V, Linden S, Wegener M 2008 Nat. Mater. 7 543

    [11]

    de Vittorio M, Todaro M T, Stomeo T, Cingolani R, Cojoc D, Fabriziob E D 2004 Microelectron. Eng. 73-74 388

    [12]

    Birner A, Grning U, Ottow S, Schneider A, Mller F, Lehmann V, Foell H, Gsele U 1998 Phys. Status Solidi A 165 111

    [13]

    Campbell M, Sharp D N, Harrison M T, Denning R G 2000 Nature 404 53

    [14]

    L H, Chu C X, You K, Zhao Q L, Wang X 2017 Optik 140 25

    [15]

    Shen K, Jiang G, Mao W, Baig S, Wang M R 2013 Appl. Opt. 52 6474

    [16]

    Jimnez-Ceniceros A, Trejo-Durn M, Alvarado-Mndez E, Castao V M 2010 Opt. Commun. 283 362

    [17]

    Wang J L, Chen H M 2007 Acta Phys. Sin. 56 922 (in Chinese) [汪静丽, 陈鹤鸣 2007 物理学报 56 922]

    [18]

    Nian X Z, Chen H M 2009 Opt. Laser Technol. 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [19]

    Zeng J, Pan J Y, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2785 (in Chinese) [曾隽, 潘杰勇, 董建文, 汪河洲 2006 物理学报 55 2785]

    [20]

    Pan J Y, Liang G Q, Mao W D, Wang H Z 2006 Acta Phys. Sin. 55 729 (in Chinese) [潘杰勇, 梁冠全, 毛卫东, 汪河洲 2006 物理学报 55 729]

    [21]

    Solak H H 2005 Microelectron. Eng. 78 410

    [22]

    Lai N D, Lin J H, Hsu C C 2007 Appl. Opt. 46 5645

    [23]

    Wang X, Xu J F, Su H M, He Y J, Jiang S J, Wang H Z 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [24]

    Wang X, Tam W Y 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [25]

    Wang X, Wang Z X, L H, Zhao Q L 2010 Acta Phys. Sin. 59 4656 (in Chinese) [王霞, 王自霞, 吕浩, 赵秋玲 2010 物理学报 59 4656]

    [26]

    Zhao Q L, L H, Zhang Q Y, Niu D J, Wang X L 2013 Acta Phys. Sin. 62 044208 (in Chinese) [赵秋玲, 吕浩, 张清悦, 牛东杰, 王霞 2013 物理学报 62 044208]

    [27]

    L H, Zhang Q Y, Zhao Q L, Wang X 2012 Appl. Opt. 51 302

    [28]

    Wang X, Xu J, Lee J C W, Tam W Y 2006 Appl. Phys. Lett. 88 051901

    [29]

    L H, Wang S Z, Wang X 2014 Chin. J. Lasers 41 201 (in Chinese) [吕浩, 王守智, 王霞 2014 中国激光 41 201]

  • [1] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] Xu Qi-Jun, Li De-Lin, Chang Chen-Liang, Yuan Cao-Jin, Feng Shao-Tong, Nie Shou-Ping. Q-plate based dual image asymmetric polarization encryption. Acta Physica Sinica, 2019, 68(8): 084202. doi: 10.7498/aps.68.20181902
    [3] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [4] Li Cheng-Qiang, Wang Ting-Feng, Zhang He-Yong, Xie Jing-Jiang, Liu Li-Sheng, Guo Jin. Effect of source parameters on polarization characteristics of electromagnetic beam propagating in atmospheric turbulence. Acta Physica Sinica, 2014, 63(10): 104201. doi: 10.7498/aps.63.104201
    [5] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [6] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation. Acta Physica Sinica, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [7] Peng Na-Na, Huo Yan-Yan, Zhou Kan, Jia Xin, Pan Jia, Sun Zhen-Rong, Jia Tian-Qing. The development of femtosecond laser-induced periodic nanostructures and their optical properties. Acta Physica Sinica, 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [8] Chang Qiang, Yang Yan-Fang, He Ying, Liu Hai-Gang, Liu Jian. Study of the focusing features of spatial amplitude and phase modulated radially polarized vortex beams in a 4pi focusing system. Acta Physica Sinica, 2013, 62(10): 104202. doi: 10.7498/aps.62.104202
    [9] Zhong Ming-Liang, Li Shan, Xiong Zu-Hong, Zhang Zhong-Yue. Plasmonic properties of silver cross-shape nanostructure. Acta Physica Sinica, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [10] Li Shan, Zhong Ming-Liang, Zhang Li-Jie, Xiong Zu-Hong, Zhang Zhong-Yue. Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures. Acta Physica Sinica, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [11] Li Yi-Yu, Wang Yuan-Yuan, Chen Hao, Zhu De-Xi, Hu Chuan, Qu Jia. Polarization dependent phase grating based on two-dimensional structured thin films. Acta Physica Sinica, 2010, 59(7): 5110-5115. doi: 10.7498/aps.59.5110
    [12] Zhao Jian-Ling, Wu Ling-An. Two variable optical delay schemes based on polarization and interference. Acta Physica Sinica, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
    [13] Xu Kai, Yang Yan-Fang, He Ying, Han Xiao-Hong, Li Chun-Fang. Study on the tight focusing of the local elliptically polarized beam. Acta Physica Sinica, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [14] Zhang Chun-Min, Liu Ning, Wu Fu-Quan. Analysis and calculation of Glan-Taylor prism’s transmittance at full angle of view in a polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [15] Xiong Ping-Xin, Jia Xin, Jia Tian-Qing, Deng Li, Feng Dong-Hai, Sun Zhen-Rong, Xu Zhi-Zhan. Two-dimensional complex nano-micro patterning on GaP and ZnSe surface created by the interference of three femtosecond laser beams. Acta Physica Sinica, 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [16] Shen Xiao-Peng, Han Kui, Shen Yi-Feng, Li Hai-Peng, Xiao Zheng-Wei, Zheng Jian. Self-collimation of unpolarized electromagnetic waves in 2D photonic crystals. Acta Physica Sinica, 2006, 55(6): 2760-2764. doi: 10.7498/aps.55.2760
    [17] Liu Huan, Yao Jian-Quan, Li En-Bang. Simulated calculation and analysis of the forbidden band for fabricating two- and three-dimensional photonic crystal structures using holographic lithography. Acta Physica Sinica, 2006, 55(5): 2286-2292. doi: 10.7498/aps.55.2286
    [18] Zhou Guo-Quan. Nonparaxial propagation of Gaussian beam in arbitrary linearly polarized state. Acta Physica Sinica, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
    [19] Luo Zhi-Yong, Yang Li-Feng, Chen Yun-Chang. Phase-shift algorithm research based on multiple-beam interference principle. Acta Physica Sinica, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] Li Rong, Ren Kun, Ren Xiao-Bin, Zhou Jing, Liu Da-He. Angular and wavelength selectivity of band gaps of holographic photonic crystals for different polarizations. Acta Physica Sinica, 2004, 53(8): 2520-2525. doi: 10.7498/aps.53.2520
Metrics
  • Abstract views:  5503
  • PDF Downloads:  144
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2017
  • Accepted Date:  06 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回