-
Pressure-induced hydrogen bond symmetrization of InOOH as well as its effects on the elastic properties is investigated by first-principles simulation. The results indicate that the hydrogen bond in InOOH symmetrized at about 18 GPa, resulting in the pressure derivative of the b/c axial ratio changing from negative to positive. While the a/c axial ratio increases with the increasing pressure over a range of 0-40 GPa, its pressure derivative does not change significantly across the hydrogen bond symmetrization. In the text, A-InOOH denotes the asymmetric hydrogen bond phase and S-InOOH refers to the symmetric hydrogen bond phase. The compressional and off-diagonal elastic constants, bulk modulus B, Poisson's ratio , B/G (G represents shear modulus) and longitudinal wave velocity VP increase with the increasing pressure in both A-InOOH and S-InOOH. These properties of A-InOOH are significantly smaller than those of S-InOOH, and therefore they increase abnormally during the hydrogen bond symmetrization, such as a 20%-40% increase of the bulk modulus. Shear modulus G and Young's modulus E increase with the increasing pressure in A-InOOH, but decrease with the increasing pressure in S-InOOH, implying that hydrogen bond symmetrization would change their pressure evolution trends obviously. Shear elastic constant C44 and shear wave velocity VS decrease with the increasing pressure in both A-InOOH and S-InOOH, and more quickly in the latter, indicating that the structure change of hydrogen bond would change their pressure evolution rates. The Young's moduli along the[100],[010] and[001] directions increase with the increasing pressure in A-InOOH, while decrease with the increasing pressure in S-InOOH, and those along the[110],[110],[110] and[110] directions always increase with the increasing pressure over a range of 0-40 GPa. The anisotropy and toughness of InOOH increase with the increasing pressure in both A-InOOH and S-InOOH, and the hydrogen bond symmetrization results in abnormal increase. In the materials containing hydrogen bonds, the effects of hydrogen bond symmetrization on different compressional elastic constants depend on the hydrogen bond projection on corresponding axes:the bigger the projection, the more significant the effect is. InOOH has an obviously smaller bulk modulus than -AlOOH. The dominant reason is that the In3+ radius (0.81 , 1 =0.1 nm) is larger than Al3+ radius (0.50 ), resulting in the weaker interaction between In3+ and O2- than that between Al3+ and O2-. In addition, InOOH has more vacancies than -AlOOH. Combining with previous investigations on other rutile-distorted MOOH (M= Al, Ga, Fe, Cr), we can infer that the axial ratios, elastic properties and wave velocities of all MOOH materials have similar pressure evolutions to those of InOOH, and the hydrogen bond symmetrization has similar effects on the properties of MOOH.
-
Keywords:
- InOOH /
- hydrogen bond symmetrization /
- elastic properties
[1] Holzapfel W B 1972 J. Chem. Phys. 56 712
[2] Sano-Furukawa A, Yagi T, Okada T, Gotou H, Kikegawa T 2012 Phys. Chem. Miner. 39 375
[3] Tsuchiya J, Tsuchiya T, Sano A, Ohtani E 2008 J. Miner. Petrol. Sci. 103 116
[4] Gleason A E, Quiroga C E, Suzuki A, Pentcheva R, Mao W L 2013 Earth Planet. Sci. Lett. 379 49
[5] Goncharov A F, Manaa M R, Zaug J M, Gee R H, Fried L E, Montgomery W B 2005 Phys. Rev. Lett. 94 065505
[6] Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71
[7] Benoit M, Marx D, Parrinello M 1998 Nature 392 258
[8] Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673
[9] Suzuki A, Ohtani E, Kamada T 2000 Phys. Chem. Miner. 27 689
[10] Bolotina N B, Molchanov V N, Dyuzheva T I, Lityagina L M, Bendeliani N A 2008 Crystallogr. Rep. 53 960
[11] Christensen A N, Hansen P, Lehmann M S 1976 J. Solid State Chem. 19 299
[12] Kuribayashi T, Sano-Furukawa A, Nagase T 2013 Phys. Chem. Miner. 41 303
[13] Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E, Yagi T 2009 Am. Mineral. 94 1255
[14] Mashino I, Murakami M, Ohtani E 2016 J. Geophys. Res. Sol. Ea. 121 595
[15] Tsuchiya J, Tsuchiya T 2009 Phys. Earth. Planet. In. 174 122
[16] Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X 2007 J. Phys. Chem. C 111 18348
[17] Zhao H, Yin W, Zhao M, Song Y, Yang H 2013 Appl. Catal. B 130 178
[18] Chen X, Lin P Y, Shi X C, Zhang Z L, Xie Z P, Li Z H 2009 Chin. J. Inorg. Chem. 25 1917
[19] Tao X J, Zhao Y B, Sun L, Zhou S M 2015 Mater. Chem. Phys. 149 275
[20] Muruganandham M, Lee G J, Wu J J, Levchuk I, Sillanpaa M 2013 Mater. Lett. 98 86
[21] Sano A, Yagi T, Okada T, Gotou H, Ohtani E, Tsuchiya J, Kikegawa T 2008 J. Miner. Petrol. Sci. 103 152
[22] Wang X F, Ma J J, Jiao Z Y, Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)[王雪飞, 马静婕, 焦照勇, 张现周 2016 物理学报 65 206201]
[23] Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101]
[24] Hao J, Zhou G G, Ma Y, Huang W Q, Zhang P, Lu G W 2016 Acta Phys. Sin. 65 113101 (in Chinese)[郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武 2016 物理学报 65 113101]
[25] Pan X D, Wei Y, Cai H Z, Qi X H, Zheng X, Hu C Y, Zhang X X 2016 Acta Phys. Sin. 65 156201 (in Chinese)[潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔 2016 物理学报 65 156201]
[26] Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202 (in Chinese)[姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞 2016 物理学报 65 026202]
[27] Wu R X, Liu D J, Yu Y, Yang T 2016 Acta Phys. Sin. 65 027101 (in Chinese)[吴若熙, 刘代俊, 于洋, 杨涛 2016 物理学报 65 027101]
[28] Huang A, Lu Z P, Zhou M, Zhou X Y, Tao Y Q, Sun P, Zhang J T, Zhang T B 2017 Acta Phys. Sin. 66 016103 (in Chinese)[黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波 2017 物理学报 66 016103]
[29] Lehmann M S, Larsen F K, Poulsen F R, Christensen A N, Rasmussen S E 1970 Acta. Chem. Scand. 24 1662
[30] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[31] Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Page Y L, Saxe P 2002 Phys. Rev. B 64 104104
[34] Liu L L, Wu X Z, Wang R, Nie X F, He Y L, Zou X 2017 Crystals 7 111
[35] Wu Z, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115
[36] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[37] Wen Y F, Wang L, Liu H L, Song L 2017 Crystals 7 39
[38] Pugh S F 1954 The London, Edingburgh, and Dublin Philos. Mag. J. Sci. 45 823
[39] Nye J F 1985 Clarencon 45 391
[40] Wu X, Wu Y, Lin J F, Liu J, Mao Z, Guo X, Yoshino T, McCammon C, Prakapenka V B, Xiao Y 2016 J. Geophys. Res. Sol. Ea. 121 6411
[41] Tsuchiya J, Tsuchiya T 2008 Phys. Earth. Planet. In. 170 215
[42] Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton:CRC Press) pp1057, 1080
[43] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp1057, 1080
-
[1] Holzapfel W B 1972 J. Chem. Phys. 56 712
[2] Sano-Furukawa A, Yagi T, Okada T, Gotou H, Kikegawa T 2012 Phys. Chem. Miner. 39 375
[3] Tsuchiya J, Tsuchiya T, Sano A, Ohtani E 2008 J. Miner. Petrol. Sci. 103 116
[4] Gleason A E, Quiroga C E, Suzuki A, Pentcheva R, Mao W L 2013 Earth Planet. Sci. Lett. 379 49
[5] Goncharov A F, Manaa M R, Zaug J M, Gee R H, Fried L E, Montgomery W B 2005 Phys. Rev. Lett. 94 065505
[6] Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71
[7] Benoit M, Marx D, Parrinello M 1998 Nature 392 258
[8] Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673
[9] Suzuki A, Ohtani E, Kamada T 2000 Phys. Chem. Miner. 27 689
[10] Bolotina N B, Molchanov V N, Dyuzheva T I, Lityagina L M, Bendeliani N A 2008 Crystallogr. Rep. 53 960
[11] Christensen A N, Hansen P, Lehmann M S 1976 J. Solid State Chem. 19 299
[12] Kuribayashi T, Sano-Furukawa A, Nagase T 2013 Phys. Chem. Miner. 41 303
[13] Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E, Yagi T 2009 Am. Mineral. 94 1255
[14] Mashino I, Murakami M, Ohtani E 2016 J. Geophys. Res. Sol. Ea. 121 595
[15] Tsuchiya J, Tsuchiya T 2009 Phys. Earth. Planet. In. 174 122
[16] Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X 2007 J. Phys. Chem. C 111 18348
[17] Zhao H, Yin W, Zhao M, Song Y, Yang H 2013 Appl. Catal. B 130 178
[18] Chen X, Lin P Y, Shi X C, Zhang Z L, Xie Z P, Li Z H 2009 Chin. J. Inorg. Chem. 25 1917
[19] Tao X J, Zhao Y B, Sun L, Zhou S M 2015 Mater. Chem. Phys. 149 275
[20] Muruganandham M, Lee G J, Wu J J, Levchuk I, Sillanpaa M 2013 Mater. Lett. 98 86
[21] Sano A, Yagi T, Okada T, Gotou H, Ohtani E, Tsuchiya J, Kikegawa T 2008 J. Miner. Petrol. Sci. 103 152
[22] Wang X F, Ma J J, Jiao Z Y, Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)[王雪飞, 马静婕, 焦照勇, 张现周 2016 物理学报 65 206201]
[23] Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101]
[24] Hao J, Zhou G G, Ma Y, Huang W Q, Zhang P, Lu G W 2016 Acta Phys. Sin. 65 113101 (in Chinese)[郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武 2016 物理学报 65 113101]
[25] Pan X D, Wei Y, Cai H Z, Qi X H, Zheng X, Hu C Y, Zhang X X 2016 Acta Phys. Sin. 65 156201 (in Chinese)[潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔 2016 物理学报 65 156201]
[26] Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202 (in Chinese)[姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞 2016 物理学报 65 026202]
[27] Wu R X, Liu D J, Yu Y, Yang T 2016 Acta Phys. Sin. 65 027101 (in Chinese)[吴若熙, 刘代俊, 于洋, 杨涛 2016 物理学报 65 027101]
[28] Huang A, Lu Z P, Zhou M, Zhou X Y, Tao Y Q, Sun P, Zhang J T, Zhang T B 2017 Acta Phys. Sin. 66 016103 (in Chinese)[黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波 2017 物理学报 66 016103]
[29] Lehmann M S, Larsen F K, Poulsen F R, Christensen A N, Rasmussen S E 1970 Acta. Chem. Scand. 24 1662
[30] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[31] Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Page Y L, Saxe P 2002 Phys. Rev. B 64 104104
[34] Liu L L, Wu X Z, Wang R, Nie X F, He Y L, Zou X 2017 Crystals 7 111
[35] Wu Z, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115
[36] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[37] Wen Y F, Wang L, Liu H L, Song L 2017 Crystals 7 39
[38] Pugh S F 1954 The London, Edingburgh, and Dublin Philos. Mag. J. Sci. 45 823
[39] Nye J F 1985 Clarencon 45 391
[40] Wu X, Wu Y, Lin J F, Liu J, Mao Z, Guo X, Yoshino T, McCammon C, Prakapenka V B, Xiao Y 2016 J. Geophys. Res. Sol. Ea. 121 6411
[41] Tsuchiya J, Tsuchiya T 2008 Phys. Earth. Planet. In. 170 215
[42] Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton:CRC Press) pp1057, 1080
[43] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp1057, 1080
Catalog
Metrics
- Abstract views: 5550
- PDF Downloads: 158
- Cited By: 0