-
Recently, the influences of the Dzyaloshinski-Moriya (DM) interaction on the performances of the basic thermo-dynamical quantities have attracted a lot of attention. A large number of investigations on the quantum coupling systems with DM interaction have been carried out. However, the specific effects of spin-orbit coupling with the performance on the quantum heat engine have not been taken into account in previous studies. DM interaction is a special kind spin-orbit coupling. To enrich the research of the quantum heat engines, the investigation about the effect of DM interaction on its thermodynamic characteristics should be included. In this study, we construct two entangled quantum engines based on spin-1/2 systems with different DM interactions, with the spin exchange constant and magnetic field fixed. The quantum Otto engine and the quantum Stirling engine are discussed in this article. By numerical calculation, we obtain the expressions for several thermodynamic quantities and plot the isoline maps of the variation of the basic thermodynamic quantities such as heat transfer, work with D1 and D2 and their efficiency in the two engines. The results indicate that the DM interaction plays an important role in the thermodynamic quantities for the quantum Otto engine and the quantum Stirling engine. In addition, the positive work condition is discussed with different DM interactions, with the spin exchange constant and magnetic field. Furthermore fixed, it is found that the efficiency of quantum Otto engine cycle is smaller than the Carnot efficiency while the quantum Stirling cycle can exceed the Carnot efficiency by using the regenerator. Finally, the second law of thermodynamics is shown to be valid in the two entangled quantum systems.
-
Keywords:
- quantum heat engine /
- Dzyaloshinski-Moriya interaction /
- efficiency
[1] Scovil H E D, Schulz-Dubois E O 1959 Phys. Rev. Lett. 2 262
[2] Geusic J E, Schulz-Dubois E O, Scovil H E D 1967 Phys. Rev. 156 343
[3] Kieu T D 2004 Phys. Rev. Lett. 93 140403
[4] Kieu T D 2006 Eur. Phys. J. D 39 115
[5] Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816
[6] Wang X G 2001 Phys. Rev. A 64 012313
[7] Thomas G, Johal R S 2011 Phys. Rev. E 83 031135
[8] Huang X L, Wang L C, Yi X X 2013 Phys. Rev. E 87 012144
[9] Zhou Y, Zhang G F, Li S S 2009 Europhys. Lett. 86 50004
[10] Zhang G F 2007 Phys. Rev. A 75 034304
[11] Feldmann T, Kosloff R 2004 Phys. Rev. E 70 046110
[12] Feldmann T, Kosloff R 2003 Phys. Rev. E 68 016101
[13] Kosloff R, Feldmann T 2002 Phys. Rev. E 65 055102
[14] Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118
[15] Zhang T, Liu W T, Chen P X, Li Z 2007 Phys. Rev. A 75 062102
[16] Thomas G, Johal R S 2014 Eur. Phys. J. B 87 166
[17] Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105
[18] Huang X L, Liu Y, Wang Z, Niu X Y 2014 Eur. Phys. J. Plus 129 4
[19] Wu F, Chen L, Sun F, Wu C, Li Q 2006 Phys. Rev. E 73 016103
[20] Ivanchenko E A 2015 Phys. Rev. E 92 032124
[21] Altintas F, MstecaplioǧluÖ E 2015 Phys. Rev. E 92 022142
[22] He X, He J, Zheng J 2012 Physica A 391 6594
[23] Cakmak S, Altintas F, MstecaplioǧluÖ E 2016 Eur. Phys. J. Plus 131 197
[24] Wang H, Liu S, He J 2009 Phys. Rev. E 79 041113
[25] Hubner W, Lefkidis G, Dong C D, Chaudhuri D 2014 Phys. Rev. B 90 024401
[26] Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hubner W, Berakdar J 2014 New J. Phys. 16 063018
[27] Albayrak E 2013 Int. J. Quantum. Inform. 11 1350021
[28] Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003
[29] Woo C H, Wen H, Semenov A A, Dudarev S L, Ma P W 2015 Phys. Rev. B 91 104306
[30] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K, Lutz E 2014 Phys. Rev. Lett. 112 030602
[31] Zhang X Y, Huang X L, Yi X X 2014 J. Phys. A: Math. Theor. 47 455002.
[32] Wang R, Wang J, He J, Ma Y 2013 Phys. Rev. E 87 042119
[33] Uzdin R, Kosloff R 2014 Europhys. Lett. 108 40001
[34] Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816
[35] Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122
[36] Dzyaloshinskii I 1958 J. Phys. Chem. Sol. 4 241
[37] Moriya T 1960 Phys. Rev. Lett. 4 228
[38] Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801
[39] Zhang G F 2008 Eur. Phys. J. D 49 123
[40] Li D C, Wang X P, Cao Z L 2008 J. Phys. Condens. Matter 20 325229
[41] Zhong X M, Nguyen B A, Yun J X 2016 Phys. Rev. E 94 042135
[42] RoSSnagel J, Dawkins S T, Tolazzi K N 2016 Science 352 325
[43] Niu X Y, Huang X L, Shang Y F, Wang X Y 2015 Int. J. Mod. Phys. B 29 1550086
[44] Huang X L, Niu X Y, Xiu X M, Yi X X 2014 Eur. Phys. J. D 68 32
-
[1] Scovil H E D, Schulz-Dubois E O 1959 Phys. Rev. Lett. 2 262
[2] Geusic J E, Schulz-Dubois E O, Scovil H E D 1967 Phys. Rev. 156 343
[3] Kieu T D 2004 Phys. Rev. Lett. 93 140403
[4] Kieu T D 2006 Eur. Phys. J. D 39 115
[5] Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816
[6] Wang X G 2001 Phys. Rev. A 64 012313
[7] Thomas G, Johal R S 2011 Phys. Rev. E 83 031135
[8] Huang X L, Wang L C, Yi X X 2013 Phys. Rev. E 87 012144
[9] Zhou Y, Zhang G F, Li S S 2009 Europhys. Lett. 86 50004
[10] Zhang G F 2007 Phys. Rev. A 75 034304
[11] Feldmann T, Kosloff R 2004 Phys. Rev. E 70 046110
[12] Feldmann T, Kosloff R 2003 Phys. Rev. E 68 016101
[13] Kosloff R, Feldmann T 2002 Phys. Rev. E 65 055102
[14] Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118
[15] Zhang T, Liu W T, Chen P X, Li Z 2007 Phys. Rev. A 75 062102
[16] Thomas G, Johal R S 2014 Eur. Phys. J. B 87 166
[17] Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105
[18] Huang X L, Liu Y, Wang Z, Niu X Y 2014 Eur. Phys. J. Plus 129 4
[19] Wu F, Chen L, Sun F, Wu C, Li Q 2006 Phys. Rev. E 73 016103
[20] Ivanchenko E A 2015 Phys. Rev. E 92 032124
[21] Altintas F, MstecaplioǧluÖ E 2015 Phys. Rev. E 92 022142
[22] He X, He J, Zheng J 2012 Physica A 391 6594
[23] Cakmak S, Altintas F, MstecaplioǧluÖ E 2016 Eur. Phys. J. Plus 131 197
[24] Wang H, Liu S, He J 2009 Phys. Rev. E 79 041113
[25] Hubner W, Lefkidis G, Dong C D, Chaudhuri D 2014 Phys. Rev. B 90 024401
[26] Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hubner W, Berakdar J 2014 New J. Phys. 16 063018
[27] Albayrak E 2013 Int. J. Quantum. Inform. 11 1350021
[28] Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003
[29] Woo C H, Wen H, Semenov A A, Dudarev S L, Ma P W 2015 Phys. Rev. B 91 104306
[30] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K, Lutz E 2014 Phys. Rev. Lett. 112 030602
[31] Zhang X Y, Huang X L, Yi X X 2014 J. Phys. A: Math. Theor. 47 455002.
[32] Wang R, Wang J, He J, Ma Y 2013 Phys. Rev. E 87 042119
[33] Uzdin R, Kosloff R 2014 Europhys. Lett. 108 40001
[34] Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816
[35] Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122
[36] Dzyaloshinskii I 1958 J. Phys. Chem. Sol. 4 241
[37] Moriya T 1960 Phys. Rev. Lett. 4 228
[38] Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801
[39] Zhang G F 2008 Eur. Phys. J. D 49 123
[40] Li D C, Wang X P, Cao Z L 2008 J. Phys. Condens. Matter 20 325229
[41] Zhong X M, Nguyen B A, Yun J X 2016 Phys. Rev. E 94 042135
[42] RoSSnagel J, Dawkins S T, Tolazzi K N 2016 Science 352 325
[43] Niu X Y, Huang X L, Shang Y F, Wang X Y 2015 Int. J. Mod. Phys. B 29 1550086
[44] Huang X L, Niu X Y, Xiu X M, Yi X X 2014 Eur. Phys. J. D 68 32
Catalog
Metrics
- Abstract views: 6284
- PDF Downloads: 260
- Cited By: 0