Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entangled quantum Otto and quantum Stirling heat engine based on two-spin systems with Dzyaloshinski-Moriya interaction

Zhao Li-Mei Zhang Guo-Feng

Citation:

Entangled quantum Otto and quantum Stirling heat engine based on two-spin systems with Dzyaloshinski-Moriya interaction

Zhao Li-Mei, Zhang Guo-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, the influences of the Dzyaloshinski-Moriya (DM) interaction on the performances of the basic thermo-dynamical quantities have attracted a lot of attention. A large number of investigations on the quantum coupling systems with DM interaction have been carried out. However, the specific effects of spin-orbit coupling with the performance on the quantum heat engine have not been taken into account in previous studies. DM interaction is a special kind spin-orbit coupling. To enrich the research of the quantum heat engines, the investigation about the effect of DM interaction on its thermodynamic characteristics should be included. In this study, we construct two entangled quantum engines based on spin-1/2 systems with different DM interactions, with the spin exchange constant and magnetic field fixed. The quantum Otto engine and the quantum Stirling engine are discussed in this article. By numerical calculation, we obtain the expressions for several thermodynamic quantities and plot the isoline maps of the variation of the basic thermodynamic quantities such as heat transfer, work with D1 and D2 and their efficiency in the two engines. The results indicate that the DM interaction plays an important role in the thermodynamic quantities for the quantum Otto engine and the quantum Stirling engine. In addition, the positive work condition is discussed with different DM interactions, with the spin exchange constant and magnetic field. Furthermore fixed, it is found that the efficiency of quantum Otto engine cycle is smaller than the Carnot efficiency while the quantum Stirling cycle can exceed the Carnot efficiency by using the regenerator. Finally, the second law of thermodynamics is shown to be valid in the two entangled quantum systems.
      Corresponding author: Zhang Guo-Feng, gf1978zhang@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574022).
    [1]

    Scovil H E D, Schulz-Dubois E O 1959 Phys. Rev. Lett. 2 262

    [2]

    Geusic J E, Schulz-Dubois E O, Scovil H E D 1967 Phys. Rev. 156 343

    [3]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403

    [4]

    Kieu T D 2006 Eur. Phys. J. D 39 115

    [5]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [6]

    Wang X G 2001 Phys. Rev. A 64 012313

    [7]

    Thomas G, Johal R S 2011 Phys. Rev. E 83 031135

    [8]

    Huang X L, Wang L C, Yi X X 2013 Phys. Rev. E 87 012144

    [9]

    Zhou Y, Zhang G F, Li S S 2009 Europhys. Lett. 86 50004

    [10]

    Zhang G F 2007 Phys. Rev. A 75 034304

    [11]

    Feldmann T, Kosloff R 2004 Phys. Rev. E 70 046110

    [12]

    Feldmann T, Kosloff R 2003 Phys. Rev. E 68 016101

    [13]

    Kosloff R, Feldmann T 2002 Phys. Rev. E 65 055102

    [14]

    Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118

    [15]

    Zhang T, Liu W T, Chen P X, Li Z 2007 Phys. Rev. A 75 062102

    [16]

    Thomas G, Johal R S 2014 Eur. Phys. J. B 87 166

    [17]

    Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105

    [18]

    Huang X L, Liu Y, Wang Z, Niu X Y 2014 Eur. Phys. J. Plus 129 4

    [19]

    Wu F, Chen L, Sun F, Wu C, Li Q 2006 Phys. Rev. E 73 016103

    [20]

    Ivanchenko E A 2015 Phys. Rev. E 92 032124

    [21]

    Altintas F, MstecaplioǧluÖ E 2015 Phys. Rev. E 92 022142

    [22]

    He X, He J, Zheng J 2012 Physica A 391 6594

    [23]

    Cakmak S, Altintas F, MstecaplioǧluÖ E 2016 Eur. Phys. J. Plus 131 197

    [24]

    Wang H, Liu S, He J 2009 Phys. Rev. E 79 041113

    [25]

    Hubner W, Lefkidis G, Dong C D, Chaudhuri D 2014 Phys. Rev. B 90 024401

    [26]

    Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hubner W, Berakdar J 2014 New J. Phys. 16 063018

    [27]

    Albayrak E 2013 Int. J. Quantum. Inform. 11 1350021

    [28]

    Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003

    [29]

    Woo C H, Wen H, Semenov A A, Dudarev S L, Ma P W 2015 Phys. Rev. B 91 104306

    [30]

    Roßnagel J, Abah O, Schmidt-Kaler F, Singer K, Lutz E 2014 Phys. Rev. Lett. 112 030602

    [31]

    Zhang X Y, Huang X L, Yi X X 2014 J. Phys. A: Math. Theor. 47 455002.

    [32]

    Wang R, Wang J, He J, Ma Y 2013 Phys. Rev. E 87 042119

    [33]

    Uzdin R, Kosloff R 2014 Europhys. Lett. 108 40001

    [34]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [35]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122

    [36]

    Dzyaloshinskii I 1958 J. Phys. Chem. Sol. 4 241

    [37]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [38]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [39]

    Zhang G F 2008 Eur. Phys. J. D 49 123

    [40]

    Li D C, Wang X P, Cao Z L 2008 J. Phys. Condens. Matter 20 325229

    [41]

    Zhong X M, Nguyen B A, Yun J X 2016 Phys. Rev. E 94 042135

    [42]

    RoSSnagel J, Dawkins S T, Tolazzi K N 2016 Science 352 325

    [43]

    Niu X Y, Huang X L, Shang Y F, Wang X Y 2015 Int. J. Mod. Phys. B 29 1550086

    [44]

    Huang X L, Niu X Y, Xiu X M, Yi X X 2014 Eur. Phys. J. D 68 32

  • [1]

    Scovil H E D, Schulz-Dubois E O 1959 Phys. Rev. Lett. 2 262

    [2]

    Geusic J E, Schulz-Dubois E O, Scovil H E D 1967 Phys. Rev. 156 343

    [3]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403

    [4]

    Kieu T D 2006 Eur. Phys. J. D 39 115

    [5]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [6]

    Wang X G 2001 Phys. Rev. A 64 012313

    [7]

    Thomas G, Johal R S 2011 Phys. Rev. E 83 031135

    [8]

    Huang X L, Wang L C, Yi X X 2013 Phys. Rev. E 87 012144

    [9]

    Zhou Y, Zhang G F, Li S S 2009 Europhys. Lett. 86 50004

    [10]

    Zhang G F 2007 Phys. Rev. A 75 034304

    [11]

    Feldmann T, Kosloff R 2004 Phys. Rev. E 70 046110

    [12]

    Feldmann T, Kosloff R 2003 Phys. Rev. E 68 016101

    [13]

    Kosloff R, Feldmann T 2002 Phys. Rev. E 65 055102

    [14]

    Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118

    [15]

    Zhang T, Liu W T, Chen P X, Li Z 2007 Phys. Rev. A 75 062102

    [16]

    Thomas G, Johal R S 2014 Eur. Phys. J. B 87 166

    [17]

    Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105

    [18]

    Huang X L, Liu Y, Wang Z, Niu X Y 2014 Eur. Phys. J. Plus 129 4

    [19]

    Wu F, Chen L, Sun F, Wu C, Li Q 2006 Phys. Rev. E 73 016103

    [20]

    Ivanchenko E A 2015 Phys. Rev. E 92 032124

    [21]

    Altintas F, MstecaplioǧluÖ E 2015 Phys. Rev. E 92 022142

    [22]

    He X, He J, Zheng J 2012 Physica A 391 6594

    [23]

    Cakmak S, Altintas F, MstecaplioǧluÖ E 2016 Eur. Phys. J. Plus 131 197

    [24]

    Wang H, Liu S, He J 2009 Phys. Rev. E 79 041113

    [25]

    Hubner W, Lefkidis G, Dong C D, Chaudhuri D 2014 Phys. Rev. B 90 024401

    [26]

    Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hubner W, Berakdar J 2014 New J. Phys. 16 063018

    [27]

    Albayrak E 2013 Int. J. Quantum. Inform. 11 1350021

    [28]

    Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003

    [29]

    Woo C H, Wen H, Semenov A A, Dudarev S L, Ma P W 2015 Phys. Rev. B 91 104306

    [30]

    Roßnagel J, Abah O, Schmidt-Kaler F, Singer K, Lutz E 2014 Phys. Rev. Lett. 112 030602

    [31]

    Zhang X Y, Huang X L, Yi X X 2014 J. Phys. A: Math. Theor. 47 455002.

    [32]

    Wang R, Wang J, He J, Ma Y 2013 Phys. Rev. E 87 042119

    [33]

    Uzdin R, Kosloff R 2014 Europhys. Lett. 108 40001

    [34]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [35]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122

    [36]

    Dzyaloshinskii I 1958 J. Phys. Chem. Sol. 4 241

    [37]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [38]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [39]

    Zhang G F 2008 Eur. Phys. J. D 49 123

    [40]

    Li D C, Wang X P, Cao Z L 2008 J. Phys. Condens. Matter 20 325229

    [41]

    Zhong X M, Nguyen B A, Yun J X 2016 Phys. Rev. E 94 042135

    [42]

    RoSSnagel J, Dawkins S T, Tolazzi K N 2016 Science 352 325

    [43]

    Niu X Y, Huang X L, Shang Y F, Wang X Y 2015 Int. J. Mod. Phys. B 29 1550086

    [44]

    Huang X L, Niu X Y, Xiu X M, Yi X X 2014 Eur. Phys. J. D 68 32

  • [1] Wang Zi, Ren Jie. Nonequilibrium thermal transport and thermodynamic geometry in periodically driven systems. Acta Physica Sinica, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [2] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [3] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [4] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [5] Li Qian-Wen, Li Ying, Zhang Rong, Lu Can-Can, Bai Long. Efficiency at arbitrary power for the Curzon-Ahlborn heat engine in linear and nonlinear heat transfer processes. Acta Physica Sinica, 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [6] Qin Mi-Mi, Luo Yong, Yang Kuo, Huang Yong. Analysis and calculation of a 170 GHz megawatt-level coaxial gyrotron. Acta Physica Sinica, 2014, 63(5): 050203. doi: 10.7498/aps.63.050203
    [7] Zheng Shi-Yan. Power output and efficiency of irreversible regenerative Stirling heat engine using generalized Redlich-Kwong gas as the working substance. Acta Physica Sinica, 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [8] Xiao Yao, Zheng Jian-Feng. Congestion and efficiency in complex traffic and transportation networks. Acta Physica Sinica, 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
    [9] Wang Tao, Huang Xiao-Li, Liu Yang, Xu Huan. Entangled quantum heat engines based on two-qubit XXZ model with Dzyaloshinski-Mariya interaction. Acta Physica Sinica, 2013, 62(6): 060301. doi: 10.7498/aps.62.060301
    [10] Ma Jun-Jian, Zhu Xiao-Fang, Jin Xiao-Lin, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Li Bin. A time-dependent nonlinear theory and simulation for gyroklystron amplifier. Acta Physica Sinica, 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [11] Li Fei, Xiao Liu, Liu Pu-Kun, Yuan Guang-Jiang, Yi Hong-Xia, Wan Xiao-Sheng. Study on estimating efficiency of multistage depressed collector in traveling wave tubes. Acta Physica Sinica, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [12] Wang Jian-Hui, Xiong Shuang-Quan, He Ji-Zhou, Liu Jiang-Tao. Performance analysis of a quantum heat engine working with a particle in a one-dimensional harmonic trap. Acta Physica Sinica, 2012, 61(8): 080509. doi: 10.7498/aps.61.080509
    [13] Duan Yu, Chen Ping, Zhao Yi, Liu Shi-Yong. A novel alternant-stripe white light emitting device. Acta Physica Sinica, 2011, 60(7): 077805. doi: 10.7498/aps.60.077805
    [14] Zhou Qing, Chen Gang, Hu Yue. A cryptosystem based on simple physical models. Acta Physica Sinica, 2011, 60(4): 044701. doi: 10.7498/aps.60.044701
    [15] Jiang Wen-Long, Cong Lin, Meng Zhao-Hui, Wang Jin, Han Qiang, Meng Fan-Chao, Wang Li-Zhong, Ding Gui-Ying, Zhang Gang. The role of magnetic fields on organic light-emitting devices based on aluminum tris(8-hydroxyquinoline) (Alq3) at room temperature. Acta Physica Sinica, 2010, 59(5): 3571-3576. doi: 10.7498/aps.59.3571
    [16] Wang Jin, Hua Jie, Ding Gui-Ying, Chang Xi, Zhang Gang, Jiang Wen-Long. Effects of magnetic field on organic electroluminescence. Acta Physica Sinica, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [17] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong. High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [18] Zeng Guang-Gen, Zheng Jia-Gui, Li Bing, Lei Zhi, Wu Li-Li, Cai Ya-Ping, Li Wei, Zhang Jing-Quan, Cai Wei, Feng Liang-Huan. Polycrystalline CdS/CdTe thin-film solar cells with intrinsic SnO2 films of high resistance. Acta Physica Sinica, 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [19] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] Chen Bao-Zhen, Huang Zu-Qia. Efficiency of the third-order harmonic in gas-filled capillary driven by fs laser pulses. Acta Physica Sinica, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
Metrics
  • Abstract views:  6284
  • PDF Downloads:  260
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2017
  • Accepted Date:  22 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回