Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Compressed sensing based fast method of solving the electromagnetic scattering problems for threedimensional conductor targets

Ding Ya-Hui Sun Yu-Fa Zhu Jin-Yu

Ding Ya-Hui, Sun Yu-Fa, Zhu Jin-Yu. Compressed sensing based fast method of solving the electromagnetic scattering problems for threedimensional conductor targets. Acta Phys. Sin., 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
Citation: Ding Ya-Hui, Sun Yu-Fa, Zhu Jin-Yu. Compressed sensing based fast method of solving the electromagnetic scattering problems for threedimensional conductor targets. Acta Phys. Sin., 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543

Compressed sensing based fast method of solving the electromagnetic scattering problems for threedimensional conductor targets

Ding Ya-Hui, Sun Yu-Fa, Zhu Jin-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The method of moments is one of the most commonly used algorithms for analyzing the electromagnetic scattering problems of conductor targets. However, it is difficult to solve the matrix equation when analyzing the electromagnetic scattering problem of the electric large target. In recent years, the theory of the compressed sensing was introduced into the method of moments to improve the computation efficiency. The random selected impedance matrix is used as a measurement matrix, and the excitation voltage is used as a measurement value when using compressed sensing theory. The recovery algorithm is used to solve the induced current of target. The method can avoid the inverse problem of matrix equation and improve the computational efficiency of the method of moments, but it can be applied only to 2-dimensional or 2.5-dimensional target. The application of compressed sensing needs to know the sparse basis of the current in advance, but the induced current of three-dimensional target which is expressed by an Rao-Wilton-Glisson basis function is not sparse on the commonly used sparse basis, such as discrete cosine transform basis and discrete wavelet basis. To solve this problem, a method of combining compressed sensing with characteristic basis functions is proposed to analyze the electromagnetic scattering problem of three-dimensional conductor target in this paper. The characteristic basis function method is an improved method of moments. The target is divided into several subdomains, the main characteristic basis functions are comprised of current bases arising from the self-interactions within the subdomain, and the secondary characteristic basis functions are obtained from the mutual coupling effects of the rest of the subdomains. Then a reduction matrix is constructed to reduce the order of matrix equation, and the current can be expressed by the characteristic basis function and its weighting coefficient. In the method presented in this paper, the weighting coefficient is considered as a sparse vector to be solved when the characteristic basis function is used as sparse basis. The number of weighting coefficients is less than the number of unknown ones, so it can be obtained from the compressed sensing recovery algorithm. At the same time, the generalized orthogonal matching pursuit algorithm is used as the recovery algorithm to speed up the recovery process. Finally, the proposed method is used to calculate the radar cross sections of a PEC sphere, nine discrete PEC targets and a simple missile model. The numerical results validate the accuracy and efficiency of the method.
      Corresponding author: Sun Yu-Fa, yfsun@ahu.edu.cn
    [1]

    Gibson W C 2014 J. Electromagn. Waves Appl. 1 181

    [2]

    Andriulli F P, Cools K, Bagci H, Olyslager F, Buffa A, Christiansen S, Michelssen E 2012 IEEE Trans. Antennas Propag. 56 2398

    [3]

    Chen Y, Zuo S, Zhang Y, Zhao X, Zhang H 2017 IEEE Trans. Antennas Propag. 65 3782

    [4]

    Cand E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [5]

    Ji S, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 65 3782

    [6]

    Ender J H G 2010 IEEE Trans. Signal Process. 65 3782

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sci. 63 120202 (in Chinese)[王哲, 王秉中 2014 物理学报 63 120202]

    [8]

    Chai S R, Guo L X, Li J, Li K 2015 Asia-Pacific Microwave Conference Nanjing, China Dec. 6-9, 2015 p1

    [9]

    Kong M, Chen M S, Wu B, Wu X 2017 IEEE Antennas Wirel. Propag. Lett. 1 99

    [10]

    Wang Z, Wang B Z, Wen Y Q, Wang R 2015 IEEE International Symposium on Antennas and Propagation Usnc/ursi National Radio Science Meeting Vancouver, BC, July 19-24, 2015 p1488

    [11]

    Chao X Y, Chen M S, Wu X L, Shen J 2013 Chin. J. Electron. 41 2361 (in Chinese)[曹欣远, 陈明生, 吴先良, 沈晶 2013 电子学报 41 2361]

    [12]

    Du H M, Chen M S, Wu X L 2012 International Conference on Microwave and Millimeter Wave Technology Shenzhen, China May 5-8, 2012 p1

    [13]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R, Tsang L 2003 Antennas and Propagation Society International Symposium Columbus, OH, USA June 22-27, 2003 p1068

    [16]

    Wang Z G 2014 Ph. D. Dissertation (Hefei:Anhui University) (in Chinese)[王仲根 2014 博士学位论文(合肥:安徽大学)]

    [17]

    Jian W, Kwon S, Shim B 2012 IEEE Trans. Signal Process. 60 6202

    [18]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4665

    [19]

    Baraniuk R G, Cevher V, Duarte M F, Hegde C 2010 IEEE Trans. Inf. Theory 56 1982

    [20]

    Duarte M F, Eldar Y C 2011 IEEE Trans. Signal Process. 59 4053

    期刊类型引用(2)

    1. 王攀,王仲根,孙玉发,聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报. 2023(03): 54-61 . 百度学术
    2. 刘颖,郭立新. 地下埋藏目标与分层粗糙面复合散射探地雷达回波特性研究. 电波科学学报. 2019(01): 111-118 . 百度学术

    其他类型引用(2)

  • [1]

    Gibson W C 2014 J. Electromagn. Waves Appl. 1 181

    [2]

    Andriulli F P, Cools K, Bagci H, Olyslager F, Buffa A, Christiansen S, Michelssen E 2012 IEEE Trans. Antennas Propag. 56 2398

    [3]

    Chen Y, Zuo S, Zhang Y, Zhao X, Zhang H 2017 IEEE Trans. Antennas Propag. 65 3782

    [4]

    Cand E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [5]

    Ji S, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 65 3782

    [6]

    Ender J H G 2010 IEEE Trans. Signal Process. 65 3782

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sci. 63 120202 (in Chinese)[王哲, 王秉中 2014 物理学报 63 120202]

    [8]

    Chai S R, Guo L X, Li J, Li K 2015 Asia-Pacific Microwave Conference Nanjing, China Dec. 6-9, 2015 p1

    [9]

    Kong M, Chen M S, Wu B, Wu X 2017 IEEE Antennas Wirel. Propag. Lett. 1 99

    [10]

    Wang Z, Wang B Z, Wen Y Q, Wang R 2015 IEEE International Symposium on Antennas and Propagation Usnc/ursi National Radio Science Meeting Vancouver, BC, July 19-24, 2015 p1488

    [11]

    Chao X Y, Chen M S, Wu X L, Shen J 2013 Chin. J. Electron. 41 2361 (in Chinese)[曹欣远, 陈明生, 吴先良, 沈晶 2013 电子学报 41 2361]

    [12]

    Du H M, Chen M S, Wu X L 2012 International Conference on Microwave and Millimeter Wave Technology Shenzhen, China May 5-8, 2012 p1

    [13]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R, Tsang L 2003 Antennas and Propagation Society International Symposium Columbus, OH, USA June 22-27, 2003 p1068

    [16]

    Wang Z G 2014 Ph. D. Dissertation (Hefei:Anhui University) (in Chinese)[王仲根 2014 博士学位论文(合肥:安徽大学)]

    [17]

    Jian W, Kwon S, Shim B 2012 IEEE Trans. Signal Process. 60 6202

    [18]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4665

    [19]

    Baraniuk R G, Cevher V, Duarte M F, Hegde C 2010 IEEE Trans. Inf. Theory 56 1982

    [20]

    Duarte M F, Eldar Y C 2011 IEEE Trans. Signal Process. 59 4053

  • [1] Wang Pan, Wang Zhong-Gen, Sun Yu-Fa, Nie Wen-Yan. Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects. Acta Physica Sinica, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [3] Wang Zhong-Gen, Mu Jun-Wen, Lin Han, Nie Wen-Yan. New reduced matrix construction accelerated iterative solution of characteristic basis function method. Acta Physica Sinica, 2019, 68(17): 170201. doi: 10.7498/aps.68.20190572
    [4] Leng Xue-Dong, Wang Da-Ming, Ba Bin, Wang Jian-Hui. A quasi-cyclic compressed sensing delay estimation algorithm based on progressive edge-growth. Acta Physica Sinica, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [5] Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan. Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets. Acta Physica Sinica, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [6] Li Hui, Zhao Lin, Li Liang. Cycle slip detection and repair based on Bayesian compressive sensing. Acta Physica Sinica, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [7] Shi Jie, Yang De-Sen, Shi Sheng-Guo, Hu Bo, Zhu Zhong-Rui. Compressive focused beamforming based on vector sensor array. Acta Physica Sinica, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [10] Chai Shui-Rong, Guo Li-Xin. A new fast algorithm based on compressive sensing for composite electromagnetic back scattering from a 2D ship located on a 1D rough sea surface. Acta Physica Sinica, 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [11] Kang Rong-Zong, Tian Peng-Wu, Yu Hong-Yi. An adaptive compressed sensing method based on selective measure. Acta Physica Sinica, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [12] Zhang Xin-Peng, Hu Niao-Qing, Cheng Zhe, Zhong Hua. Vibration data recovery based on compressed sensing. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [13] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [14] Yu Tao, Yin Cheng-You, Liu Han. Analysis on spherical conformal microstrip antenna array by characteristic basis function method. Acta Physica Sinica, 2014, 63(23): 230701. doi: 10.7498/aps.63.230701
    [15] Chen Ming-Sheng, Wang Shi-Wen, Ma Tao, Wu Xian-Liang. Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing. Acta Physica Sinica, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [16] Wang Zhe, Wang Bing-Zhong. Application of compressed sensing theory in the method of moments. Acta Physica Sinica, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [17] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] Feng Bing-Chen, Fang Sheng, Zhang Li-Guo, Li Hong, Tong Jie-Juan, Li Wen-Qian. A non-linear analysis for gamma-ray spectrum based on compressed sensing. Acta Physica Sinica, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] Bai Xu, Li Yong-Qiang, Zhao Sheng-Mei. Differential compressive correlated imaging. Acta Physica Sinica, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] Wang Zhong-Gen, Sun Yu-Fa, Wang Guo-Hua. Fast analyses of electromagnetic scattering characteristics from conducting targets using improved and the adaptive cross approximation algorithm. Acta Physica Sinica, 2013, 62(20): 204102. doi: 10.7498/aps.62.204102
  • 期刊类型引用(2)

    1. 王攀,王仲根,孙玉发,聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报. 2023(03): 54-61 . 百度学术
    2. 刘颖,郭立新. 地下埋藏目标与分层粗糙面复合散射探地雷达回波特性研究. 电波科学学报. 2019(01): 111-118 . 百度学术

    其他类型引用(2)

Metrics
  • Abstract views:  7416
  • PDF Downloads:  304
  • Cited By: 4
Publishing process
  • Received Date:  28 November 2017
  • Accepted Date:  22 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回