Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Establishment of ionospheric model containing sporadic E and its applications in target height measurement

Luo Huan Xiao Hui

Citation:

Establishment of ionospheric model containing sporadic E and its applications in target height measurement

Luo Huan, Xiao Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ionosperic sporadic-E layer (Es layer) is the irregular structure in ionosphere which often occurs in summer of China, but the current model of height estimation with high frequency rays does not consider the Es layer, which often makes a large error in the estimation of the target height. In this paper, the parameters of the actual ionosphere are analyzed by using the measured data of the ionospheric vertical measurement station and the information about the variation of the ionosphere in southeastern China which was obtained in recent years. The measured data indicate that the probability of occurrence of Es in China is relatively high, especially in summer. When Es appears in summer, the probability of its cut-off frequency greater than 4.5 MHz reaches up to 83.6%, therefore, it is necessary to study the target height measurement model and algorithm when the ionosphere contains Es. Firstly, on the basis of the quasi-parabolic segments ionosphere model and real ionosphere parameters, the ionosphere model containing the Es layer is established. In this model, Es layer and its connection layer with the E layer are represented by parabola and reverse parabola respectively. Then, the high frequency transmission characteristics of the target micro multipath are analyzed based on Es model. The simulation shows that 4 multipath echoes can be simulated by the characteristics of different slant ranges and Doppler frequencies in the multiple echoes of the target. By matching the simulated 4 multipath echoes with the actual high frequency echo of the target, when the matching degree reaches a maximum value, the estimated height value can be obtained. Finally, based on the micro multipath difference between high frequency rays and the ionospheric model with Es layer, a height estimation method using matched-field processing and hill climbing search algorithm is proposed. This method can greatly reduce the search time for obtaining the real height value. Through theoretical analysis and experimental verification, the relationships between the ionospheric plasma frequency and height, between the transmission path of high frequency rays and the elevation angle/transmitting frequency, and between the micro path characteristics of high frequency rays and the height of target are obtained. Ionospheric model with the Es layer and the new target height measurement method based on the matched-field processing can accurately estimate the height of the target and have a faster calculation speed.
      Corresponding author: Luo Huan, luohuan5566@sina.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51309232).
    [1]

    Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar -Terr. Phys. 62 685

    [2]

    vauli P, Bourdillon A 2008 J. Atmosph. Solar -Terr. Phys. 70 1904

    [3]

    Han Y M, Hu J, Kong Q Y, Fan J M 2009 Chin. J. Radio Sci. 24 929 (in Chinese) [韩彦明, 胡进, 孔庆颜, 凡俊梅 2009 电波科学学报 24 929]

    [4]

    Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401 (in Chinese) [郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401]

    [5]

    Croft T A, Hoogasian H 1968 Radio Sci. 3 69

    [6]

    Dyson P L, Bennett J A 1988 J. Atmosph. Solar -Terr. Phys. 50 251

    [7]

    Norman R J 1997 Radio Sci. 32 397

    [8]

    Bilitza D 2001 Radio Sci. 36 261

    [9]

    Reinisch B W, Huang X Q 2000 Adv. Space Res. 25 81

    [10]

    Scotto C 2009 Adv. Space Res. 44 756

    [11]

    Papazoglou M, Krolik J L 1999 IEEE Trans. Signal Process. 47 966

    [12]

    Papazoglou M 1998 Ph. D. Dissertation (Durham: Duke University)

    [13]

    Smith L G, Mechtly E A 1972 Radio Sci. 7 367

    [14]

    Whitehead J D 1961 Nature 20 49

    [15]

    Whitehead J D 1989 J. Atmosph. Solar -Terr. Phys. 51 401

    [16]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302]

    [17]

    Sun L F, Zhao B Q, Yue X A, Mao T 2014 Chin. J. Geophys. –CH. 57 3625

    [18]

    Norman R J, Dyson P L, Bennett J A 1998 S-RAMP Proceedings of the AIP Congress Australia, September, 1998 p147

    [19]

    Tan H 2004 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences) (in Chinese) [谭辉 2004 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)]

    [20]

    Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311 (in Chinese) [李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311]

    [21]

    Wu X, Chen J W, Bao Z, Guo D Y 2014 Acta Phys. Sin. 63 119401 (in Chinese) [吴瑕, 陈建文, 鲍拯, 郭德阳 2014 物理学报 63 119401]

    [22]

    Hinson J M, Staddon J E R 1983 J. Exp. Anal. Behav. 40 321

    [23]

    Anderson C W, Green S D, Kingsley S P 1996 IEE Proc. -Radar, Sonar Navig. 143 281

  • [1]

    Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar -Terr. Phys. 62 685

    [2]

    vauli P, Bourdillon A 2008 J. Atmosph. Solar -Terr. Phys. 70 1904

    [3]

    Han Y M, Hu J, Kong Q Y, Fan J M 2009 Chin. J. Radio Sci. 24 929 (in Chinese) [韩彦明, 胡进, 孔庆颜, 凡俊梅 2009 电波科学学报 24 929]

    [4]

    Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401 (in Chinese) [郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401]

    [5]

    Croft T A, Hoogasian H 1968 Radio Sci. 3 69

    [6]

    Dyson P L, Bennett J A 1988 J. Atmosph. Solar -Terr. Phys. 50 251

    [7]

    Norman R J 1997 Radio Sci. 32 397

    [8]

    Bilitza D 2001 Radio Sci. 36 261

    [9]

    Reinisch B W, Huang X Q 2000 Adv. Space Res. 25 81

    [10]

    Scotto C 2009 Adv. Space Res. 44 756

    [11]

    Papazoglou M, Krolik J L 1999 IEEE Trans. Signal Process. 47 966

    [12]

    Papazoglou M 1998 Ph. D. Dissertation (Durham: Duke University)

    [13]

    Smith L G, Mechtly E A 1972 Radio Sci. 7 367

    [14]

    Whitehead J D 1961 Nature 20 49

    [15]

    Whitehead J D 1989 J. Atmosph. Solar -Terr. Phys. 51 401

    [16]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302]

    [17]

    Sun L F, Zhao B Q, Yue X A, Mao T 2014 Chin. J. Geophys. –CH. 57 3625

    [18]

    Norman R J, Dyson P L, Bennett J A 1998 S-RAMP Proceedings of the AIP Congress Australia, September, 1998 p147

    [19]

    Tan H 2004 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences) (in Chinese) [谭辉 2004 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)]

    [20]

    Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311 (in Chinese) [李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311]

    [21]

    Wu X, Chen J W, Bao Z, Guo D Y 2014 Acta Phys. Sin. 63 119401 (in Chinese) [吴瑕, 陈建文, 鲍拯, 郭德阳 2014 物理学报 63 119401]

    [22]

    Hinson J M, Staddon J E R 1983 J. Exp. Anal. Behav. 40 321

    [23]

    Anderson C W, Green S D, Kingsley S P 1996 IEE Proc. -Radar, Sonar Navig. 143 281

  • [1] Zhao Hai-Sheng, Xu Zheng-Wen, Xu Zhao-Hui, Xue Kun, Zheng Yan-Shuai, Xie Shou-Zhi, Feng Jie, Wu Jian. Ionospheric scintillation suppression based on chemical release. Acta Physica Sinica, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [2] Luo Huan, Xiao Hui. Analysis of broadening mechanism of ionospheric echo spectrum and spectrum sharpening method. Acta Physica Sinica, 2019, 68(21): 219401. doi: 10.7498/aps.68.20190887
    [3] Nie Min, Tang Shou-Rong, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influence of the ionospheric sporadic E layer on the performance of quantum satellite communication in the mid latitude region. Acta Physica Sinica, 2017, 66(7): 070302. doi: 10.7498/aps.66.070302
    [4] Hao Shu-Ji, Zhang Wen-Chao, Zhang Ya-Bin, Yang Ju-Tao, Ma Guang-Lin. Modeling of radio wave propagations under sporadic-E influence at low and middle latitudes. Acta Physica Sinica, 2017, 66(11): 119401. doi: 10.7498/aps.66.119401
    [5] Hao Shu-Ji, Li Qing-Liang, Yang Ju-Tao, Wu Zhen-Sen. Theory of ELF/VLF wave directional radiation by modulated heating of ionosphere. Acta Physica Sinica, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [6] Chen Li-Juan, Lu Shi-Ping, Mo Jia-Qi. The periodic orbits of sport model of plasmas particle in the process of magnetosphere-ionosphere coupling. Acta Physica Sinica, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [7] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Ionospheric disturbances produced by chemical releases at different release altitudes. Acta Physica Sinica, 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [8] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere. Acta Physica Sinica, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [9] Sheng Zheng. Research on different time-scale prediction models for the total electron content. Acta Physica Sinica, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [10] Wang Feng, Zhao Zheng-Yu, Chang Shan-Shan, Ni Bin-Bin, Gu Xu-Dong. Raytracing of extreamely low frequency waves radiated from ionospheric artificial modulation at low latitude. Acta Physica Sinica, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [11] Hu Yao-Gai, Zhao Zheng-Yu, Xiang Wei, Zhang Yuan-Nong. Morphological control of artificial ionospheric hole and its short-wave propagation effects. Acta Physica Sinica, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [12] Hong Zhen-Jie, Liu Rong-Jian, Guo Peng, Dong Nai-Ming. Non-spherical symmetric inversion of ionospheric occultation data. Acta Physica Sinica, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [13] Xu Xian-Sheng, Hong Zhen-Jie, Guo Peng, Liu Rong-Jian. Retrieval and validation of ionospheric measurements from COSMIC radio occultation. Acta Physica Sinica, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [14] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Disturbance effects of some representative chemical releases in ionosphere. Acta Physica Sinica, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [15] Shi Run, Zhao Zheng-Yu. Preliminary study of effects introduced by the dip angle on IAR. Acta Physica Sinica, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [16] Li Xiao-Feng, Xie Yong-Jun, Fan Jun, Wang Yuan-Yuan. The high-frequency method for scattering from the wedges of complex conductive targets in half space. Acta Physica Sinica, 2009, 58(2): 908-913. doi: 10.7498/aps.58.908
    [17] Li Xiao-Feng, Xie Yong-Jun, Wang Peng, Yang Rui. High-frequency analysis of scattering from coated targets with electrically large size in half space. Acta Physica Sinica, 2008, 57(5): 2930-2935. doi: 10.7498/aps.57.2930
    [18] HUANG CHAO-SONG, LI JUN, M .C. KELLEY. A THEORY OF MW-LATITUDE IONOSPHERIC IRREGULARITIES PRODUCED BY ATMO-SPHERIC GRAVITY WAVES. Acta Physica Sinica, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] PAN WEI-YAN. INFLUENCE OF EARTH'S CURVATURE ON CALCULATION OF IONOSPHERE REFLECTION AT LF AND VLF BANDS. Acta Physica Sinica, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 研究中国天空电离层之初草报告. Acta Physica Sinica, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
Metrics
  • Abstract views:  5958
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2017
  • Accepted Date:  02 January 2018
  • Published Online:  05 April 2018

/

返回文章
返回