Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy

Wang Guang-Xue Wang Sheng-Ye Ge Ming-Ming Deng Xiao-Gang

Citation:

High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy

Wang Guang-Xue, Wang Sheng-Ye, Ge Ming-Ming, Deng Xiao-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The numerical prediction of transition from laminar to turbulent flow has proven to be an arduous challenge to computational fluid dynamics (CFD). Few approaches can provide routine accurate results within the cost limitations of engineering applications. In the present paper described is the application of a -Re transition model in combination with the delay detached eddy simulation (DDES) and Ffowcs Williams and Hawkings (FW-H) acoustic analogy method to cylinder vortex/vortex induced noise at a subcritical Reynolds number. In the process of numerical simulation, a traditional DDES based on the full-turbulence model SST is carried out for comparison and a 7th-order weighted compact nonlinear scheme (WCNS-E8T7) is adopted to ensure that the physical models are not affected by numerical dissipation or dispersion. In the first case, single cylinder cross-flow at ReD =4.3104 and Ma=0.21, is considered as a benchmarking problem for validating turbulence models and aerodynamic noise prediction methods. Its aerodynamic coefficients, St, CL and CD at root-mean-square (rms) and averaged values are measured by Szepessy and Bearman, while an acoustic measurement was recently made at Ecole Centrale de Lyon. The traditional DDES only based on SST model (SST-DDES) delays the instability of the shear layer on the sides of the cylinder, which leads to the recirculation zone in mean flow to grow and the induced drag to increase. Moreover, the vortex shedding frequency predicted by SST-DDES is larger than the actual value, which makes the whole sound pressure level (SPL) spectrum move toward high frequency region. However, combining the -Re transition model, the DDES (called Tran-DDES in the present article) can give the results in good agreement with the experimental data. In the second case considered is an airfoil in the wake of the cylinder. The flow condition is similar to that in the first case and the experimental results are also obtained at Ecole Centrale de Lyon. The issue of SST-DDES in recirculation zone in mean flow is weakened, which relates to the interaction between the airfoil and cylinder wake, the prediction of mean flow by SST-DDES is similar to that by the Tran-DDES. But in terms of the rms values of turbulent fluctuation components and SPL, the predictions by Tran-DDES are still better than those by SST-DDES.
      Corresponding author: Wang Sheng-Ye, wangshengye0415@sina.com
    • Funds: Project supported by the Foundation of the National University of Defense Technology of China (Grant No. ZDYYJCYJ20140101).
    [1]

    Hodara J, Smith M 2017 AIAA J. 1 1

    [2]

    Seo J, Chang K, Moon Y 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2573

    [3]

    Boudet J, Grosjean N, Jacob M 2005 Intl J. Aeroacoust 4 93

    [4]

    Giret J C, Sengissen A, Moreau S, Sanjos M 2015 AIAA J. 53 1062

    [5]

    Jiang Y, Mao M, Deng X, Liu H 2015 J. Fluid Mech. 779 1

    [6]

    Langtry R, Menter F 2009 AIAA J. 47 2894

    [7]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [8]

    Menter M, Kuntz M, Bender R 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6-9, 2003 AIAA 2003-767

    [9]

    Langtry R, Gola J, Menter F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9-12, 2006 AIAA 2006-395

    [10]

    Srensen N, Bechmann A, Zahle F 2011 Wind Energ. 14 77

    [11]

    You J, Kwon O 2013 Comput. Fluids 80 63

    [12]

    Qiao L, Bai J, Hua J, Wang C 2014 Appl. Mech. Materials 444-445 374

    [13]

    Snchez-Rocha M, Menon S 2009 J. Comput. Phys. 228 2037

    [14]

    Wang S Y, Wang G X, Dong Y D, Deng X G (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2016 国防科技大学学报 38 14]

    [15]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 1st AFOSR International Conference on DNS/LES Ruston, Louisiana, August 4-8, 1997

    [16]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2001 AlAA 2001-0879

    [17]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [18]

    Francescantonio P 1997 J. Sound Vibration 202 491

    [19]

    Kato C, Iida A, Takano Y, Fujita H, Ikegawa M 1993 31st Aerospace Scmces Meeting Exhibit Reno, Nevada, January 11-14, 1993 AIAA 1993-145

    [20]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [21]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [22]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [23]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 物理学报 64 054705]

    [24]

    Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701 (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2017 物理学报 66 184701]

    [25]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Inter. J. Comput. Fluid Dyn. 30 7

    [26]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [27]

    Szepessy S, Bearman P 1992 J. Fluid Mech. 234 191

    [28]

    van Leer B 1979 J. Comput. Phys. 32 101

    [29]

    Jacob M, Boudet J, Casalino D, Michard M 2005 Theoret. Comput. Fluid Dyn. 19 171

    [30]

    Agrawal B, Sharma A 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16-20, 2014 AIAA 2014-3295

    [31]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluid 37 402

    [32]

    Galdeano S, Barr S, Rau N 2010 16th AIAA/CEAS Aeroacoustics Conference Stockholm, Sweden, June 7-9, 2010 AIAA 2010-3702

  • [1]

    Hodara J, Smith M 2017 AIAA J. 1 1

    [2]

    Seo J, Chang K, Moon Y 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2573

    [3]

    Boudet J, Grosjean N, Jacob M 2005 Intl J. Aeroacoust 4 93

    [4]

    Giret J C, Sengissen A, Moreau S, Sanjos M 2015 AIAA J. 53 1062

    [5]

    Jiang Y, Mao M, Deng X, Liu H 2015 J. Fluid Mech. 779 1

    [6]

    Langtry R, Menter F 2009 AIAA J. 47 2894

    [7]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [8]

    Menter M, Kuntz M, Bender R 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6-9, 2003 AIAA 2003-767

    [9]

    Langtry R, Gola J, Menter F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9-12, 2006 AIAA 2006-395

    [10]

    Srensen N, Bechmann A, Zahle F 2011 Wind Energ. 14 77

    [11]

    You J, Kwon O 2013 Comput. Fluids 80 63

    [12]

    Qiao L, Bai J, Hua J, Wang C 2014 Appl. Mech. Materials 444-445 374

    [13]

    Snchez-Rocha M, Menon S 2009 J. Comput. Phys. 228 2037

    [14]

    Wang S Y, Wang G X, Dong Y D, Deng X G (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2016 国防科技大学学报 38 14]

    [15]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 1st AFOSR International Conference on DNS/LES Ruston, Louisiana, August 4-8, 1997

    [16]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2001 AlAA 2001-0879

    [17]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [18]

    Francescantonio P 1997 J. Sound Vibration 202 491

    [19]

    Kato C, Iida A, Takano Y, Fujita H, Ikegawa M 1993 31st Aerospace Scmces Meeting Exhibit Reno, Nevada, January 11-14, 1993 AIAA 1993-145

    [20]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [21]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [22]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [23]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 物理学报 64 054705]

    [24]

    Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701 (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2017 物理学报 66 184701]

    [25]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Inter. J. Comput. Fluid Dyn. 30 7

    [26]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [27]

    Szepessy S, Bearman P 1992 J. Fluid Mech. 234 191

    [28]

    van Leer B 1979 J. Comput. Phys. 32 101

    [29]

    Jacob M, Boudet J, Casalino D, Michard M 2005 Theoret. Comput. Fluid Dyn. 19 171

    [30]

    Agrawal B, Sharma A 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16-20, 2014 AIAA 2014-3295

    [31]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluid 37 402

    [32]

    Galdeano S, Barr S, Rau N 2010 16th AIAA/CEAS Aeroacoustics Conference Stockholm, Sweden, June 7-9, 2010 AIAA 2010-3702

  • [1] Niu Zhong-Guo, Xu Xiang-Hui, Wang Jian-Feng, Jiang Jia-Li, Liang Hua. Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [2] Chen Yan-Jun, Wang Sheng-Ye, Fu Xiang, Liu Wei. Preliminary study on Reynolds stress model based on νt-scale equation. Acta Physica Sinica, 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [3] Experimental study on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211425
    [4] Zheng Tian-Yun, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. High-order natural transition simulation method based on deep residual network. Acta Physica Sinica, 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [5] Ren Jin-Lian, Ren Heng-Fei, Lu Wei-Gang, Jiang Tao. Simulation of two-dimensional nonlinear problem with solitary wave based on split-step finite pointset method. Acta Physica Sinica, 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [6] Ge Ming-Ming, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. Aeroacoustic simulation of the high-lift airfoil using hybrid reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method. Acta Physica Sinica, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [7] Wang Sheng-Ye, Wang Guang-Xue, Dong Yi-Dao, Deng Xiao-Gang. High-order detached-eddy simulation method based on a Reynolds-stress background model. Acta Physica Sinica, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [8] Zhang Shi-Gong, Wu Xian-Mei, Zhang Bi-Xing. Theory and method for nonlinear acoustics detection based on hysteretic stress-strain relation. Acta Physica Sinica, 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [9] He Zhao-Cheng, Sun Wen-Bo. A new car-following model considering lateral separation and overtaking expectation. Acta Physica Sinica, 2013, 62(10): 108901. doi: 10.7498/aps.62.108901
    [10] Sun Hong-Wei, Lin Guo-Chang, Du Xing-Wen, P.F. Pai. Simulation and experimental study of a metamaterial panel for mechanical wave absorption. Acta Physica Sinica, 2012, 61(15): 154302. doi: 10.7498/aps.61.154302
    [11] Peng Kai, Liu Da-Gang. Numerical simulation and study of three-dimensional thermal field emission. Acta Physica Sinica, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [12] Bao Bo-Cheng, Liu Zhong, Xu Jian-Ping, Zhu Lei. Generation of multi-scroll hyperchaotic attractor based on Colpitts oscillator model. Acta Physica Sinica, 2010, 59(3): 1540-1548. doi: 10.7498/aps.59.1540
    [13] Li Ming-Sheng, Cai Xiao-Hong. A ionization theory based on united and separated atom model. Acta Physica Sinica, 2007, 56(8): 4448-4453. doi: 10.7498/aps.56.4448
    [14] Shen Shou-Feng. Virasoro symmetry subalgebra, multi-linear variable separation solutions and localized excitations of higher-dimensional differential-difference models. Acta Physica Sinica, 2006, 55(11): 5606-5610. doi: 10.7498/aps.55.5606
    [15] Mo Jia-Qi, Lin Wan-Tao. Perturbed solution for the ENSO nonlinear model. Acta Physica Sinica, 2004, 53(4): 996-998. doi: 10.7498/aps.53.996
    [16] LI CUN-BIAO. ON THE FORMATION OF THE STREAMWISE VORTEX IN A TRANSITIONAL BOUNDARY LAYER. Acta Physica Sinica, 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
    [17] QIAN ZU-WEN. SPECIAL SOLUTION OF SECOND HARMONIC WAVE EQUATION IN NONLINEAR ACOUSTICS AND APPLICATIONS TO BOUNDARY-VALUE PROBLEM. Acta Physica Sinica, 1993, 42(6): 949-953. doi: 10.7498/aps.42.949
    [18] LEI XIAO-LIN, TING CHIN-SEN. EFFECT OF COMBINED ACOUSTIC AND OPTICAL PHONON SCATTERING IN NONLINEAR ELECTRONIC TRANSPORT. Acta Physica Sinica, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [19] FENG RUO, GONG XIU-FEN, ZHU ZHENG-YA, SHI TAO. STUDY OF ACOUSTICAL NONLINEARITY B/A IN BIOLOGICAL MEDIUM. Acta Physica Sinica, 1984, 33(9): 1282-1286. doi: 10.7498/aps.33.1282
    [20] XIE XIN-NENG. A SIMPLE TYPE OF PNEUMATIC VACUUM VALVE. Acta Physica Sinica, 1976, 25(3): 271-272. doi: 10.7498/aps.25.271
Metrics
  • Abstract views:  6039
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2017
  • Accepted Date:  10 August 2018
  • Published Online:  05 October 2018

/

返回文章
返回