Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Band structure model of modified Ge for optical device application

Yang Wen Song Jian-Jun Ren Yuan Zhang He-Ming

Citation:

Band structure model of modified Ge for optical device application

Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ge is an indirect bandgap semiconductor, which can be converted into a direct bandgap semiconductor by using the modification techniques. The carrier radiation recombination efficiency of modified Ge is high, which can be used in optical devices. The mobility of Ge semiconductor carriers is higher than that of Si semiconductor carriers, so Ge device can work fast and have good frequency characteristics in electronic device. In view of the application advantages of modified Ge semiconductors in both optical devices and electrical devices, it has been a potential material of monolithic optoelectronic integration. The Ge and GeSn as optoelectronic device materials have a great competitive advantage, but there is no mature Ge-based monolithic photoelectric integration. In order to realize Ge-based optical interconnection, the bandgap of luminous tube, detector and waveguide active layer material must satisfy the following sequence:Eg,waveguide Eg,luminoustube Eg,detector. Therefore, in order to achieve the same layer monolithic photoelectric integration, we must modulate the energy band structure of the active layer material of the device. Unfortunately, the literature in this area is lacking. The band structure is one of the theoretical foundations for the monolithic photoelectric integration of the modified Ge materials, but the work in this area is still inadequate. In this paper, this problem is investigated from three aspects. 1) Based on the generalized Hooke's law and the principle of deformation potential, a modified Ge bandgap type transformation model is established under different modification conditions, perfecting the theory of converting the indirect switching into direct band gap of Ge. 2) On the basis of establishing the strain tensor and deformation potential model, a modified Ge band E-k model is established, and the relevant conclusions can provide key parameters for LED and laser device simulation models. 3) Based on the theory of solid energy band, the bandgap width modulation scheme of the modified Ge under the uniaxial stress is proposed, which provides an important theoretical reference for realizing the Ge-based single-layer photoelectric integration. The results in this paper can provide an important theoretical basis for understanding the material physics of the modified Ge and designing the active layers of the light emitting devices in the Ge based optical interconnection.
      Corresponding author: Yang Wen, 13289999663@163.com
    • Funds: Project supported by the 111Project, China (Grant No. B12026).
    [1]

    Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002

    [2]

    Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715

    [3]

    Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108

    [4]

    Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201

    [5]

    Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104

    [6]

    Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907

    [7]

    Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505

    [8]

    Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715

    [9]

    Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109

    [10]

    Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332

    [11]

    Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301

    [12]

    Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204

    [13]

    Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316

    [14]

    Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106

    [15]

    Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11

    [16]

    Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]

    [17]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 物理学报 64 038501]

    [18]

    Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369

    [19]

    Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358

    [20]

    Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802

  • [1]

    Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002

    [2]

    Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715

    [3]

    Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108

    [4]

    Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201

    [5]

    Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104

    [6]

    Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907

    [7]

    Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505

    [8]

    Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715

    [9]

    Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109

    [10]

    Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332

    [11]

    Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301

    [12]

    Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204

    [13]

    Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316

    [14]

    Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106

    [15]

    Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11

    [16]

    Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]

    [17]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 物理学报 64 038501]

    [18]

    Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369

    [19]

    Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358

    [20]

    Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802

  • [1] Wen Heng-Di, Liu Yue, Zhen Liang, Li Yang, Xu Cheng-Yan. Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation. Acta Physica Sinica, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [2] Zhou Guang-Zheng, Li Ying, Lan Tian, Dai Jing-Jing, Wang Cong-Cong, Wang Zhi-Yong. Design and simulation of integration of vertical cavity surface emitting lasers and heterojunction bipolar transistor. Acta Physica Sinica, 2019, 68(20): 204203. doi: 10.7498/aps.68.20190529
    [3] Zhang Zhen-Fang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong. Properties of band gaps in phononic crystal pipe consisting of expansion chambers with extended inlet/outlet. Acta Physica Sinica, 2018, 67(7): 074301. doi: 10.7498/aps.67.20172383
    [4] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [5] Liu Xue-Lu, Wu Jiang-Bin, Luo Xiang-Dong, Tan Ping-Heng. Dual-modulated photoreflectance spectra of semi-insulating GaAs. Acta Physica Sinica, 2017, 66(14): 147801. doi: 10.7498/aps.66.147801
    [6] Shen Hao, Li Dong-Sheng, Yang De-Ren. Research progress of silicon light source. Acta Physica Sinica, 2015, 64(20): 204208. doi: 10.7498/aps.64.204208
    [7] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [8] Xie Jian-Feng, Cao Jue-Xian. Modulation of the band structure of layered BN film with stain. Acta Physica Sinica, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [9] Xu Jun-Min, Hu Xiao-Hui, Sun Li-Tao. Electrical properties of platinum doped armchair graphene nanoribbons. Acta Physica Sinica, 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [10] Gong Li, Feng Xiang-Yang, Lu Yao, Zhang Chang-Wen, Wang Pei-Ji. The investigation on effect of property of ZnO photoelectric material by Ta-doping. Acta Physica Sinica, 2012, 61(9): 097101. doi: 10.7498/aps.61.097101
    [11] Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya. The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell. Acta Physica Sinica, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [12] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Jiang Lei, Zhang Guo-Lian, Song Peng. Material opto-electronic properties of In, N co-doped SnO2 studied by first principles. Acta Physica Sinica, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [13] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. First-principles calculation on electronic structure and optical properties of iron-doped SnO2. Acta Physica Sinica, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [14] Du Xiao-Qing, Wang Xiao-Hui, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Zhang Yi-Jun, Guo Xiang-Yang. Comparison between gradient-doping and uniform-doping GaN photocathodes. Acta Physica Sinica, 2011, 60(4): 047901. doi: 10.7498/aps.60.047901
    [15] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [16] Hao Guo-Jun, Fu Xiu-Jun, Hou Zhi-Lin. Band structure of phononic crystal constructed by Fibonacci super-cell on square lattice. Acta Physica Sinica, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [17] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] Wu Yun-Wen, Hai Wen-Hua, Cai Li-Hua. Energy band structure of two ions in a one-dimensional Paul trap. Acta Physica Sinica, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [19] Chen De-Yan, Lü Tie-Yu, Huang Mei-Chun. GW quasiparticle band structure of BaSe. Acta Physica Sinica, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  7442
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2018
  • Accepted Date:  24 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回