-
Optical diode is a device that can realize unidirectional transmission of light. Its function is similar to that of an electronic diode. It has important applications in the field of optoelectronic integration and all-optical communications. Unidirectional wave transmission requires either time-reversal or spatial inversion symmetry breaking. The magneto-optical effect and optical nonlinearity are usually utilized to break the time-reversal symmetry and obtain the unidirectional transmission. However, these schemes all need high light intensity or magnetic field strength to be realized, and limit the usage. Therefore, spatial inversion symmetry breaking is highly desirable because of totally linear materials under low intensities. Quit a lot of researchers have designed optical diodes based on the photonic crystals and achieved unidirectional transmission for TE-like or TM-like light. The early design realized light unidirectional transmission by PC structures for only one polarization state (TE-like or TM-like incident light). It limits the application for the high integration and reconfigurable optical interconnection. The structure which can achieve unidirectional transmission for both TE and TM polarizations needs to be designed. The annular PCs have been verified to realize polarization-independent phenomena, such as beam splitting, self collimation and waveguide. In this paper, an annular PC is proposed. The plane wave expansion method is used to calculate band structures. The results show that it exhibits a significant directional band gap for both TE and TM mode. Then, the triangular annular PC is constructed, and its transmission spectra and field distributions are calculated by the finite-different time-domain method. It is found that the structure can realize the polarization-independent unidirectional transmission, but the forward transmissivity is too low (about 20%). Moreover, another smaller size annular PC is further introduced to form annular PC heterojunction, which effectively improves the polarization-independent unidirectional transmission performance and the forward transmissivity has doubled. Through the adjustment of the interface structure, the forward transmissivity is further increased. The optimized annular PC heterostructure can realize polarization-independent unidirectional transmission, and the forward transmissivity reaches 44%. The heterostructure can be used to fabricate polarization-independent optical diode, and may have potential applications in complex all-optical integrated circuits.
[1] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[2] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[3] Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152Google Scholar
[4] Wierer J J, Krames M R, Epler J E 2004 Appl. Phys. Lett. 84 3885Google Scholar
[5] Kim D H, Cho C O, Roh Y G 2005 Appl. Phys. Lett. 87 203508Google Scholar
[6] Wang C X, Xu X S, Li F, Du W, Xiong G G, Liu Y L, Chen H D 2006 Chin. Phys. Lett. 23 2472Google Scholar
[7] 朱桂新, 于天宝, 陈淑文, 石哲, 胡淑娟, 赖珍荃, 廖清华, 黄永箴 2009 物理学报 58 1014Google Scholar
Zhu X G, Yu T B, Chen S W, Shi Z, Hu S J, Lai Z Q, Liao Q H, Huang Y Z 2009 Acta Phys. Sin. 58 1014Google Scholar
[8] 杨倩倩, 侯蓝田 2009 物理学报 58 8345Google Scholar
Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345Google Scholar
[9] 陈颖, 王文跃, 于娜 2014 物理学报 63 034205
Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205
[10] 庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 物理学报 64 224202Google Scholar
Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202Google Scholar
[11] 张学智, 冯鸣, 张心正 2013 物理学报 62 024201
Zhang X Z, Feng M, Zhang X Z 2013 Acta Phys. Sin. 62 024201
[12] Zaman T R, Guo X, Ram R 2007 J. Appl. Phys. Lett. 90 023514Google Scholar
[13] Bi L, Hu J, Jiang P, et al. 2011 Nat. Photonics 5 758Google Scholar
[14] Fan L, Wang J, Varghese L T 2012 Science 335 447Google Scholar
[15] Kurt H, Yilmaz D, Akosman A E, et al. 2012 Opt. Express 20 20635Google Scholar
[16] Zhang Y Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar
[17] Lu C C, Hu X Y, Zhang Y B, et al. 2011 Appl. Phys. Lett. 99 051107Google Scholar
[18] Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar
[19] Feng S, Wang Y Q 2013 Opt. Express 21 220Google Scholar
[20] Feng S, Wang Y Q 2013 Opt. Mater. 36 546Google Scholar
[21] 程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213Google Scholar
Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar
[22] 刘丹, 胡森, 肖明 2017 物理学报 66 054209
Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209
[23] Yucel M B, Cicek A, Ulug B 2013 Photonics and Nanostructures-Fundamentals and Applications 11 270
[24] Cicek A, Ulug B 2009 Opt. Express 17 18381Google Scholar
[25] Hou J, Gao D S, Wu H 2009 Opt. Commun. 282 3172Google Scholar
[26] Wu H, Citrin D S, Jiang L Y, et al. 2013 Appl. Phys. Lett. 102 141112Google Scholar
[27] Jiang L Y, Wu H, Li X Y 2013 J. Opt. Soc. Am. B 30 1248
[28] Feng J, Chen Y, Blair J, et al. 2009 J. Vac. Sci. Technol. B 27 568Google Scholar
-
图 5 (a)环形孔光子晶体异质结结构;(b) PC1的能带结构;(c)入射光源为类TE模式时的正、反向透过谱; (d)入射光源为类TM模式时的正、反向透过谱
Figure 5. (a) Annular PC heterostructure; (b) band structure of PC1; (c) forward and backward transmission spectra of the TE-like incident light; (d) forward and backward transmission spectra of the TM-like incident light.
-
[1] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[2] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[3] Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152Google Scholar
[4] Wierer J J, Krames M R, Epler J E 2004 Appl. Phys. Lett. 84 3885Google Scholar
[5] Kim D H, Cho C O, Roh Y G 2005 Appl. Phys. Lett. 87 203508Google Scholar
[6] Wang C X, Xu X S, Li F, Du W, Xiong G G, Liu Y L, Chen H D 2006 Chin. Phys. Lett. 23 2472Google Scholar
[7] 朱桂新, 于天宝, 陈淑文, 石哲, 胡淑娟, 赖珍荃, 廖清华, 黄永箴 2009 物理学报 58 1014Google Scholar
Zhu X G, Yu T B, Chen S W, Shi Z, Hu S J, Lai Z Q, Liao Q H, Huang Y Z 2009 Acta Phys. Sin. 58 1014Google Scholar
[8] 杨倩倩, 侯蓝田 2009 物理学报 58 8345Google Scholar
Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345Google Scholar
[9] 陈颖, 王文跃, 于娜 2014 物理学报 63 034205
Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205
[10] 庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 物理学报 64 224202Google Scholar
Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202Google Scholar
[11] 张学智, 冯鸣, 张心正 2013 物理学报 62 024201
Zhang X Z, Feng M, Zhang X Z 2013 Acta Phys. Sin. 62 024201
[12] Zaman T R, Guo X, Ram R 2007 J. Appl. Phys. Lett. 90 023514Google Scholar
[13] Bi L, Hu J, Jiang P, et al. 2011 Nat. Photonics 5 758Google Scholar
[14] Fan L, Wang J, Varghese L T 2012 Science 335 447Google Scholar
[15] Kurt H, Yilmaz D, Akosman A E, et al. 2012 Opt. Express 20 20635Google Scholar
[16] Zhang Y Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar
[17] Lu C C, Hu X Y, Zhang Y B, et al. 2011 Appl. Phys. Lett. 99 051107Google Scholar
[18] Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar
[19] Feng S, Wang Y Q 2013 Opt. Express 21 220Google Scholar
[20] Feng S, Wang Y Q 2013 Opt. Mater. 36 546Google Scholar
[21] 程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213Google Scholar
Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar
[22] 刘丹, 胡森, 肖明 2017 物理学报 66 054209
Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209
[23] Yucel M B, Cicek A, Ulug B 2013 Photonics and Nanostructures-Fundamentals and Applications 11 270
[24] Cicek A, Ulug B 2009 Opt. Express 17 18381Google Scholar
[25] Hou J, Gao D S, Wu H 2009 Opt. Commun. 282 3172Google Scholar
[26] Wu H, Citrin D S, Jiang L Y, et al. 2013 Appl. Phys. Lett. 102 141112Google Scholar
[27] Jiang L Y, Wu H, Li X Y 2013 J. Opt. Soc. Am. B 30 1248
[28] Feng J, Chen Y, Blair J, et al. 2009 J. Vac. Sci. Technol. B 27 568Google Scholar
Catalog
Metrics
- Abstract views: 7408
- PDF Downloads: 0
- Cited By: 0