搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环形微腔的多频段三角晶格光子晶体耦合腔波导光学传输特性

刘幸 郭红梅 付饶 范浩然 冯帅 陈笑 李传波 王义全

引用本文:
Citation:

基于环形微腔的多频段三角晶格光子晶体耦合腔波导光学传输特性

刘幸, 郭红梅, 付饶, 范浩然, 冯帅, 陈笑, 李传波, 王义全

Optical transmission characteristics of multi-band triangular-lattice photonic crystal coupling cavity waveguide based on annular microcavity

Liu Xing, Guo Hong-Mei, Fu Rao, Fan Hao-Ran, Feng Shuai, Chen Xiao, Li Chuan-Bo, Wang Yi-Quan
PDF
导出引用
  • 本文理论研究了近红外波段硅基三角晶格光子晶体环形微腔的光场局域特性,通过将微腔在空间周期性排列组成耦合腔光波导,研究了多个导带区域内光束传输时的群速度,最大和最小值分别为0.0028c和0.00028c.将环形微腔在垂直于光传输方向上进行交错排列,通过改变相邻微腔之间的耦合区域,可以大幅降低多频段范围内光束在耦合腔波导中传输时群速度之间的差异,并提高部分频段的透过率数值.在不改变介质柱半径条件下,通过去掉三角晶格光子晶体中距中心介质柱距离分别为2a和√3a的六个介质柱构成了两种微腔,研究了两种微腔所支持的谐振波长之间的差异,在此基础上构造了两种耦合腔波导,进而将这两种耦合腔光波导与W1型输入/输出波导相连,最终实现了在多个不同频率范围内降低群速度的同时实现频段选择和频段分束功能,其导模群速度可降低到0.00047c.
    The light localization characteristics of the near-infrared triangular-lattice photonic crystal annular microcavity are studied theoretically in this paper. The photonic crystal has a lattice constant of a=540 and it is composed of silicon rods each with a radius of r=135 immersed in air background. The two kinds of annular microcavities are obtained by removing 12 silicon rods which are located respectively at a distance of 2a and at a distance of √3a to the central rod. Five resonant wavelengths and the corresponding eigen mode profiles of the microcavity are studied. A coupled resonant optical waveguide is formed by integrating the microcavities with a periodic length of 7a in space. The group velocity of light beam propagation within multiple guiding bands are analyzed by the tight-binding approximation method. The maximum and minimum velocity of 0.0028c and 0.00082c are obtained, where c is the light velocity in vacuum. The light transmittance values and spatial steady distributions of the electric field's amplitude through the structure at several wavelengths within the guiding bands are studied by the finite-difference time-domain method. The results are consistent with that calculated by the plane wave expand method. Interleaving circular microcavities perpendicular to the direction of optical transmission at a lateral distance of 2√3a, the coupling region between the adjacent microcavities is changed, the difference in group velocity between guiding bands apparently decreases and the transmittance values of two frequency bands are enhanced.
    Keeping the size of silicon rods unchanged, two kinds of microcavities are constructed by removing the six rods with the distances of 2a and √3a from the center of the central silicon rod, respectively. The resonant wavelengths supported by the above two microcavities are studied. Two coupled-resonant optical waveguides with a periodic length of 7a are proposed. Connecting these two coupled cavity optical waveguides with the W1-typed input/output waveguides, the selecting and sharing function of guiding band are finally achieved for wavelengths within different frequency bands. Keeping the group velocity slowing down, a maximum value of one guiding band reaches 0.00047c.
    • 基金项目: 国家自然科学基金(批准号:61775244,61675238,11374378)和大学生创新训练计划(批准号:URTP2018110002,URTP2018110009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775244, 61675238, 11374378), and the Undergraduate Innovative Test Program of China (Grant Nos. URTP2018110002, URTP2018110009).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Fu Y, Zhang J, Hu X, Gong Q 2010 J. Opt. 12 075202

    [4]

    Djavid M, Monifi F, Ghaffari A, Abrishamian M S 2008 Opt. Commun. 281 4028

    [5]

    Bahrami P M, Abrishamian M S, Mirtaheri S A 2011 J. Opt. 13 015103

    [6]

    Danaie M, Far R N, Dideban A 2018 IJOP 2 1

    [7]

    Zhao T, Lou S, Wang X, Zhou M, Lian Z 2016 Appl. Opt. 55 6428

    [8]

    Wang H, Yan X, Li S, An G, Zhang X 2017 J. Mod. Opt. 64 445

    [9]

    Feng S, Wang Y, Wang W 2013 Optik 124 331

    [10]

    Zhou H, Gu T, Mcmillan J F, Yu M, Lo G, Kwong D L, Feng G, Zhou S, Wong C W 2016 Appl. Phys. Lett. 108 111106

    [11]

    Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y 2017 Nat. Commun. 8 14411

    [12]

    Söllner I, Prindalnielsen K, Lodahl P, Mahmoodian S, Stobbe S 2017 Opt. Mater. Express 7 43

    [13]

    Yariv A, Xu Y, Lee R K, Scherer A 1999 Opt. Let. 24 711

    [14]

    Olivier S, Smith C, Rattier M, Benisty H, Weisbuch C, Krauss T, Houdré R, Oesterlé U 2001 Opt. Lett. 26 1019

    [15]

    Feng S, Chen X, Yang D, Yang Y, Wang Y 2010 J. Opt. 13 015705

    [16]

    Feng S, Yang G, Li Y, Chen X, Yang D, Yang Y, Wang Y, Wang W 2012 Sci.China Phys. Mech. 55 1769

    [17]

    Feng S, Wang Y Q 2011 Chin. Phys. B 20 289

    [18]

    Baba T 2008 Nat. Photonics 2 465

    [19]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [20]

    Berenger J P 1996 J. Comput. Phys. 127 363

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Fu Y, Zhang J, Hu X, Gong Q 2010 J. Opt. 12 075202

    [4]

    Djavid M, Monifi F, Ghaffari A, Abrishamian M S 2008 Opt. Commun. 281 4028

    [5]

    Bahrami P M, Abrishamian M S, Mirtaheri S A 2011 J. Opt. 13 015103

    [6]

    Danaie M, Far R N, Dideban A 2018 IJOP 2 1

    [7]

    Zhao T, Lou S, Wang X, Zhou M, Lian Z 2016 Appl. Opt. 55 6428

    [8]

    Wang H, Yan X, Li S, An G, Zhang X 2017 J. Mod. Opt. 64 445

    [9]

    Feng S, Wang Y, Wang W 2013 Optik 124 331

    [10]

    Zhou H, Gu T, Mcmillan J F, Yu M, Lo G, Kwong D L, Feng G, Zhou S, Wong C W 2016 Appl. Phys. Lett. 108 111106

    [11]

    Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y 2017 Nat. Commun. 8 14411

    [12]

    Söllner I, Prindalnielsen K, Lodahl P, Mahmoodian S, Stobbe S 2017 Opt. Mater. Express 7 43

    [13]

    Yariv A, Xu Y, Lee R K, Scherer A 1999 Opt. Let. 24 711

    [14]

    Olivier S, Smith C, Rattier M, Benisty H, Weisbuch C, Krauss T, Houdré R, Oesterlé U 2001 Opt. Lett. 26 1019

    [15]

    Feng S, Chen X, Yang D, Yang Y, Wang Y 2010 J. Opt. 13 015705

    [16]

    Feng S, Yang G, Li Y, Chen X, Yang D, Yang Y, Wang Y, Wang W 2012 Sci.China Phys. Mech. 55 1769

    [17]

    Feng S, Wang Y Q 2011 Chin. Phys. B 20 289

    [18]

    Baba T 2008 Nat. Photonics 2 465

    [19]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [20]

    Berenger J P 1996 J. Comput. Phys. 127 363

  • [1] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [2] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [3] 戚志明, 梁文耀. 表层厚度渐变一维耦合腔光子晶体的反射相位特性及其应用. 物理学报, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [4] 姜其畅, 刘超, 刘晋宏, 张俊香. 原子系统中远失谐脉冲光束对的群速度操控. 物理学报, 2015, 64(9): 094208. doi: 10.7498/aps.64.094208
    [5] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究. 物理学报, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [6] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [7] 潘伟, 余和军, 张晓光, 席丽霞. 高Q值二维光子晶体缺三腔的数值模拟与分析. 物理学报, 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [8] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [9] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [10] 沈宏君, 田慧平, 纪越峰. 一种新型无色散慢光光子晶体薄板波导. 物理学报, 2010, 59(4): 2820-2826. doi: 10.7498/aps.59.2820
    [11] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [12] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [13] 张建心, 屈道宽, 冯帅, 王义全, 王传奎. 微腔旋转对耦合腔光波导群速度的影响. 物理学报, 2009, 58(12): 8339-8344. doi: 10.7498/aps.58.8339
    [14] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究. 物理学报, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [15] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [16] 杜晓宇, 郑婉华, 张冶金, 任 刚, 王 科, 邢名欣, 陈良惠. 慢光在光子晶体弯折波导中的高透射传播. 物理学报, 2008, 57(11): 7005-7011. doi: 10.7498/aps.57.7005
    [17] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [18] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [19] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [20] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
计量
  • 文章访问数:  6121
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-22
  • 修回日期:  2018-09-04
  • 刊出日期:  2018-12-05

/

返回文章
返回