Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of the angle between magnetic field and ribbon axis on the magneto-impedance properties of amorphous FeSiB/Cu/FeSiB sandwiched ribbon

Shao Xian-Yi Xu Ai-Jiao Wang Tian-Le

Citation:

Effects of the angle between magnetic field and ribbon axis on the magneto-impedance properties of amorphous FeSiB/Cu/FeSiB sandwiched ribbon

Shao Xian-Yi, Xu Ai-Jiao, Wang Tian-Le
PDF
HTML
Get Citation
  • Amorphous FeSiB ribbons with nominal composition of Fe78Si9B13 are prepared by single roll rapid quenching technique. In order to enhance the giant magneto-impedance (GMI) effect of FeSiB ribbons, interlaminar gluing method is used to produce FeSiB/Cu/FeSiB sandwiched structure in which the FeSiB ribbons act as external soft magnetic layers and the Cu foil acts as internal conductive layer. The variation characteristics of GMI with angle $\beta$ between the external magnetic field and the ribbon axis for the single layer FeSiB ribbon and the sandwiched ribbon are studied by a rotating device placed in magnetic field which can drive the sample to rotate, to obtain a variable angle $\beta$ from 0° to 90° with 15° degree angle interval. Magnetic domain structure detection shows that the amorphous FeSiB ribbons have near-axial magnetic anisotropy, and the angle between easy axis and ribbon axis is about 15°. In this work, in the case without considering the effects of shape anisotropy, the functional relationship among magnetic field at anisotropic peak of permeability, transverse permeability ratio and angle $\beta$ is obtained according to the expression of the transverse permeability of ribbon derived from a domain rotation model. The results display that anisotropic peak appears in the transverse permeability for each of all testing values of angle $\beta$. Moreover, the transverse permeability ratio increases with $\beta$ increasing. The magneto-impedance testing results indicate that the maximum GMI ratio of single layer ribbon is only about 30% at an optimum response frequency of 7.0 MHz, and angle $\beta$ has almost no influence on the GMI. In contrast, the GMI of sandwiched ribbon presents a significant enhancement, the maximum value of the longitudinal GMI ratio and that of transverse GMI ratio reach 272% and 464%, respectively at an optimum response frequency of 0.6 MHz, the GMI of sandwiched ribbon is sensitive to the variation of angle $\beta$, and with increase of $\beta$ the GMI increases accordingly. In addition, for all testing values of angle $\beta$, the GMI profiles of sandwiched ribbon show anisotropic peaks, due to the influence of transverse demagnetization field, and the anisotropic peak broadens with the increase of angle $\beta$. By comparing the theoretical and experimental results, it can be concluded that for the sandwiched ribbon, the characteristics of GMI changing with angle $\beta$ agree better with the theoretical transverse permeability, which but is not for single layer ribbon. Besides, whether the anisotropic peak of GMI appears is independent of the orientation of the external magnetic field. As the transverse permeability ratio increases with the increase of angle $\beta$, the GMI effect of sandwiched ribbon is enhanced accordingly. The study results also demonstrate that the domain rotation model can be used to explicate the variation of GMI properties of sandwiched ribbon with the angle between magnetic field and ribbon axis qualitatively when the domain rotation magnetization is dominant.
      Corresponding author: Shao Xian-Yi, sxy8718@163.com
    • Funds: Project supported by the Public Technology Application Research Plan of Zhejiang Province, China (Grant No. 2017C37096).
    [1]

    张树玲, 陈炜晔, 张勇 2015 物理学报 64 167501Google Scholar

    Zhang S L, Chen W Y, Zhang Y 2015 Acta Phys. Sin. 64 167501Google Scholar

    [2]

    王文静, 袁慧敏, 李娟, 姬长建, 代由勇, 萧淑琴 2013 中国科学: 物理学 力学 天文学 43 852Google Scholar

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852Google Scholar

    [3]

    Phan M H, Peng H X 2008 Prog. Mater. Sci. 53 323Google Scholar

    [4]

    He J, Guo H Q, Shen B G, He K Y, Zhang H W 2001 Mater. Sci. Eng. A 304–306 988Google Scholar

    [5]

    Phan M H, Peng H X, Wisnom M R, Yu S C, Kim C G, Nghi N H 2006 Sensor. Actuat. A: Phys. 129 62Google Scholar

    [6]

    Hika K, Panina L V, Mohri K 1996 IEEE Trans. Magn. 32 4594Google Scholar

    [7]

    Xiao S Q, Liu Y H, Yan S S, Dai Y Y, Zhang L, Mei L M 2000 Phys. Rev. B 61 5734Google Scholar

    [8]

    Le A T, Tung M T, Phan M H 2012 J. Supercond. Nov. Magn. 25 1133Google Scholar

    [9]

    周勇, 丁文, 陈吉安, 杨春生, 高孝裕, 王明军, 张亚民 2004 磁性材料及器件 35 8Google Scholar

    Zhou Y, Ding W, Chen J A, Yang C S, Gao X Y, Wang M J, Zhang Y M 2004 J. Magn. Mater. Dev. 35 8Google Scholar

    [10]

    Zhong Z Y, Zhang H W, Jing Y L, Tang X L, Liu S 2008 Sens. Actuators A: Phys. 141 29Google Scholar

    [11]

    Amalou F, Gijs M A M 2004 J. Appl. Phys. 95 1364Google Scholar

    [12]

    Alves F, Moutoussamy J, Coillot C, Abirached L, Kaviraj B 2008 Sens. Actuators A: Phys. 145–146 241Google Scholar

    [13]

    邵先亦, 陈卫平, 钟彬荃, 谢佳文 2018 稀有金属材料与工程 47 1160

    Shao X Y, Chen W P, Zhong B Q, Xie J W 2018 Rare Metal Mat. Eng. 47 1160

    [14]

    Zhao C B, Zhang X L, Liu Q F, Wang J B 2016 J. Phys. D 49 065006Google Scholar

    [15]

    Sommer R L, Chien C L 1996 Phys. Rev. B 53 R5982Google Scholar

    [16]

    Pirota K R, Kraus L, Knobel M, Pagliuso P G, Rettori C 1999 Phys. Rev. B 60 6685Google Scholar

    [17]

    Yu J Q, Yu A B, Zhou Y, Cai B C, Zhao X L 2000 Proceedings of the Fourth International Conference on Thin Film Physics and Applications Shanghai, China, May 8–11, 2000 p514

    [18]

    Mardani R, Amirabadizadeh A 2014 Mod. Phys. Lett. B 28 1450197Google Scholar

    [19]

    王艾玲, 刘江涛, 周云松, 姜宏伟, 郑鹉 2004 物理学报 53 905Google Scholar

    Wang A L, Liu J T, Zhou Y S, Jiang H W, Zheng W 2004 Acta Phys. Sin. 53 905Google Scholar

    [20]

    Panina L V, Mohri K, Uchiyama T, Noda M 1995 IEEE Trans. Magn. 31 1249Google Scholar

    [21]

    Reichl L E 1998 A Modern Course in Statistical Physics (2nd Ed.) (New York: Wiley-VCH) p376

    [22]

    Atkinson D, Squire P T 1998 J. Appl. Phys. 83 6569Google Scholar

    [23]

    张建强, 叶慧群, 郑建龙, 李通银, 李文忠, 马云, 方允樟 2010 浙江师范大学学报(自然科学版) 33 150Google Scholar

    Zhang J Q, Ye H Q, Zheng J L, Li T Y, Li W Z, Ma Y, Fang Y Z 2010 J. Zheiiang Normal Univ. (Nat. Sci.) 33 150Google Scholar

    [24]

    Makhnovskiy D P, Panina L V, Mapps D J 2001 J. Appl. Phys. 89 7224Google Scholar

    [25]

    Betancourt I 2011 Materials 4 37

    [26]

    Kurlyandskaya G V, Barandiarán J M, Vázquez M, Garcı́A D, Dmitrieva N V 2000 J. Magn. Magn. Mater. 215–216 740Google Scholar

    [27]

    Franco C S, Ribas G P, Bruno A C 2006 Sens. Actuators A: Phys. 132 85Google Scholar

    [28]

    Sommer R L, Chien C L 1995 J. Appl. Phys. Lett. 67 3346Google Scholar

    [29]

    Zhao C B, Pan L N, Ma X Q, Li J N, Liu Q F, Wang J B 2017 J. Magn. Magn. Mater. 444 198Google Scholar

  • 图 1  (a) 磁阻抗测试装置示意图; (b) 三明治薄带结构示意图

    Figure 1.  (a) Schematic view of magneto-impedance mesurement device; (b) structural sketch of sandwich ribbon

    图 2  薄带面内各向异性场、磁化强度、外磁场、交流驱动场关系示意图

    Figure 2.  Sketch map of the relationship among in-plane anisotropy field, magnetization, external magnetic field, AC driven field in ribbon

    图 3  非晶FeSiB薄带的磁畴结构 (a) 3.5 mm × 3.5 mm薄带; (b) 28 mm × 3.5 mm薄带

    Figure 3.  Magnetic domain of amorphous ribbons: (a) Ribbon size is 3.5 mm × 3.5 mm; (b) ribbon size is 28 mm × 3.5 mm

    图 4  非晶FeSiB薄带磁滞回线(L和T分别表示所加磁场平行和垂直于带轴方向)

    Figure 4.  Hysteresis loop of amorphous FeSiB ribbon (“L” and “T” indicates the field direction parallel or perpendicular to the ribbon axis, respectively)

    图 5  单层薄带磁阻抗特性 (a) 不同$\beta$角的MI比随频率的变化特性; (b) $\beta$ = 0°时, 不同频率的MI比随外磁场的变化特性

    Figure 5.  The MI characteristics of single layer ribbon: (a) MI ratios of different $\beta$ vary with frequency; (b) MI ratios of different frequencies change with field, at $\beta$ = 0°

    图 6  不同$\beta$角下三明治薄带磁阻抗特性 (a) MI比随频率的变化特性; (b) 0.6 MHz频率下MI比随外磁场的变化特性

    Figure 6.  The MI characteristics of sandwiched ribbon at different angle $\beta$: (a) MI ratios vary with frequency; (b) field dependence of MI ratios at the frequency of 0.6 MHz

    图 7  h = Hext/Hk随夹角$\beta$的变化关系

    Figure 7.  h = Hext/Hk varies with the angle $\beta$

    图 8  不同$\beta$角时最大MI比与理论磁导率比的比较 (a) 单层薄带样品; (b) 三明治薄带样品; (c) 理论磁导率比

    Figure 8.  Comparison between maximum MI ratios and theoretical permeability ratios at different $\beta$: (a) Single layer ribbon; (b) sandwiched ribbon; (c) theoretical permeability ratios

  • [1]

    张树玲, 陈炜晔, 张勇 2015 物理学报 64 167501Google Scholar

    Zhang S L, Chen W Y, Zhang Y 2015 Acta Phys. Sin. 64 167501Google Scholar

    [2]

    王文静, 袁慧敏, 李娟, 姬长建, 代由勇, 萧淑琴 2013 中国科学: 物理学 力学 天文学 43 852Google Scholar

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852Google Scholar

    [3]

    Phan M H, Peng H X 2008 Prog. Mater. Sci. 53 323Google Scholar

    [4]

    He J, Guo H Q, Shen B G, He K Y, Zhang H W 2001 Mater. Sci. Eng. A 304–306 988Google Scholar

    [5]

    Phan M H, Peng H X, Wisnom M R, Yu S C, Kim C G, Nghi N H 2006 Sensor. Actuat. A: Phys. 129 62Google Scholar

    [6]

    Hika K, Panina L V, Mohri K 1996 IEEE Trans. Magn. 32 4594Google Scholar

    [7]

    Xiao S Q, Liu Y H, Yan S S, Dai Y Y, Zhang L, Mei L M 2000 Phys. Rev. B 61 5734Google Scholar

    [8]

    Le A T, Tung M T, Phan M H 2012 J. Supercond. Nov. Magn. 25 1133Google Scholar

    [9]

    周勇, 丁文, 陈吉安, 杨春生, 高孝裕, 王明军, 张亚民 2004 磁性材料及器件 35 8Google Scholar

    Zhou Y, Ding W, Chen J A, Yang C S, Gao X Y, Wang M J, Zhang Y M 2004 J. Magn. Mater. Dev. 35 8Google Scholar

    [10]

    Zhong Z Y, Zhang H W, Jing Y L, Tang X L, Liu S 2008 Sens. Actuators A: Phys. 141 29Google Scholar

    [11]

    Amalou F, Gijs M A M 2004 J. Appl. Phys. 95 1364Google Scholar

    [12]

    Alves F, Moutoussamy J, Coillot C, Abirached L, Kaviraj B 2008 Sens. Actuators A: Phys. 145–146 241Google Scholar

    [13]

    邵先亦, 陈卫平, 钟彬荃, 谢佳文 2018 稀有金属材料与工程 47 1160

    Shao X Y, Chen W P, Zhong B Q, Xie J W 2018 Rare Metal Mat. Eng. 47 1160

    [14]

    Zhao C B, Zhang X L, Liu Q F, Wang J B 2016 J. Phys. D 49 065006Google Scholar

    [15]

    Sommer R L, Chien C L 1996 Phys. Rev. B 53 R5982Google Scholar

    [16]

    Pirota K R, Kraus L, Knobel M, Pagliuso P G, Rettori C 1999 Phys. Rev. B 60 6685Google Scholar

    [17]

    Yu J Q, Yu A B, Zhou Y, Cai B C, Zhao X L 2000 Proceedings of the Fourth International Conference on Thin Film Physics and Applications Shanghai, China, May 8–11, 2000 p514

    [18]

    Mardani R, Amirabadizadeh A 2014 Mod. Phys. Lett. B 28 1450197Google Scholar

    [19]

    王艾玲, 刘江涛, 周云松, 姜宏伟, 郑鹉 2004 物理学报 53 905Google Scholar

    Wang A L, Liu J T, Zhou Y S, Jiang H W, Zheng W 2004 Acta Phys. Sin. 53 905Google Scholar

    [20]

    Panina L V, Mohri K, Uchiyama T, Noda M 1995 IEEE Trans. Magn. 31 1249Google Scholar

    [21]

    Reichl L E 1998 A Modern Course in Statistical Physics (2nd Ed.) (New York: Wiley-VCH) p376

    [22]

    Atkinson D, Squire P T 1998 J. Appl. Phys. 83 6569Google Scholar

    [23]

    张建强, 叶慧群, 郑建龙, 李通银, 李文忠, 马云, 方允樟 2010 浙江师范大学学报(自然科学版) 33 150Google Scholar

    Zhang J Q, Ye H Q, Zheng J L, Li T Y, Li W Z, Ma Y, Fang Y Z 2010 J. Zheiiang Normal Univ. (Nat. Sci.) 33 150Google Scholar

    [24]

    Makhnovskiy D P, Panina L V, Mapps D J 2001 J. Appl. Phys. 89 7224Google Scholar

    [25]

    Betancourt I 2011 Materials 4 37

    [26]

    Kurlyandskaya G V, Barandiarán J M, Vázquez M, Garcı́A D, Dmitrieva N V 2000 J. Magn. Magn. Mater. 215–216 740Google Scholar

    [27]

    Franco C S, Ribas G P, Bruno A C 2006 Sens. Actuators A: Phys. 132 85Google Scholar

    [28]

    Sommer R L, Chien C L 1995 J. Appl. Phys. Lett. 67 3346Google Scholar

    [29]

    Zhao C B, Pan L N, Ma X Q, Li J N, Liu Q F, Wang J B 2017 J. Magn. Magn. Mater. 444 198Google Scholar

  • [1] Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Ma Yun, Li Wen-Zhong, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Shi Ying-Long, Dang Wen-Qiang, Ye Hui-Qun, Fang Yun-Zhang. Regulation mechanism of giant magneto-impedance effect of multi-field coupling Fe-based alloy. Acta Physica Sinica, 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [2] Zhang Shu-Ling, Chen Wei-Ye, Zhang Yong. Asymmetric giant magnetoimpedance of Co-rich melt-extraction microwires. Acta Physica Sinica, 2015, 64(16): 167501. doi: 10.7498/aps.64.167501
    [3] Li Yin-Feng, Feng Su-Qin, Wang Jian-Yong. Influence of AC current on the profile of GMI effect in Fe-based nanocrystalline wire. Acta Physica Sinica, 2011, 60(3): 037306. doi: 10.7498/aps.60.037306
    [4] Fang Yun-Zhang, Xu Qi-Ming, Zheng Jin-Ju, Lü Bao-Hua, Pan Ri-Min, Ye Hui-Qun, Zheng Jian-Long, Fan Xiao-Zhen. Investigation on the relation between the length of magnetic core and the giant magnetoimpedance effect of solenoid with FeCo-based magnetic core. Acta Physica Sinica, 2011, 60(12): 127501. doi: 10.7498/aps.60.127501
    [5] Zhang Shu-Ling, Sun Jian-Fei, Xing Da-Wei. Influence of field annealing on giant magneto-impedance effect of Co-based melt extraction amorphous wires. Acta Physica Sinica, 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [6] Pang Hao, Li Gen, Wang Zan-Ji. Analysis of magnetoimpedance in amorphous wire passing through a magnetic ring. Acta Physica Sinica, 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [7] Pan Hai-Lin, Cheng Jin-Ke, Zhao Zhen-Jie, He Jia-Kang, Ruan Jian-Zhong, Yang Xie-Long, Yuan Wang-Zhi. Study of the LC resonance giant magneto-impedance effect. Acta Physica Sinica, 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [8] Xin Hong-Liang, Yuan Wang-Zhi, Cheng Jin-Ke, Lin Hong, Ruan Jian-Zhong, Zhao Zhen-Jie. The giant magneto-impedance effect and frequency dependence of magnetization processes in NiFeCoP/BeCu composite wire. Acta Physica Sinica, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [9] Shao Ming-Hui, Chen Qing-Yong, Zheng Wu. Influence of TbDyFe film on giant magnetoimpedance in sandwiched films. Acta Physica Sinica, 2006, 55(2): 811-815. doi: 10.7498/aps.55.811
    [10] Liu Long-Ping, Zhao Zhen-Jie, Huang Can-Xing, Wu Zhi-Ming, Yang Xie-Long. Analysis of current-density distribution and giant magnetoimpedance effect in composite wires. Acta Physica Sinica, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [11] Wang Wen-Jing, Yuan Hui-Min, Jiang Shan, Xiao Shu-Qin, Yan Shi-Shen. Transverse giant magneto-impedance effect in FeCuCrVSiB single layered and multilayered films. Acta Physica Sinica, 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [12] Wang Wen-Jing, Xiao Shu-Qin, Liu Yi-Hua, Chen Wei-Ping, Dai You-Yong, Jiang Shan, Yuan Hui-Min, Yan Shi-Shen. The influence of sputtering power on the giantmagneto-impedance of FeZrBCu film s. Acta Physica Sinica, 2005, 54(4): 1821-1825. doi: 10.7498/aps.54.1821
    [13] Yang Quan-Min, Wang Ling-Ling, Sun De-Cheng. Theoretical study on the influence of the microstructure of Fe73.5Cu1Nb3Si13.5B9 on its giant magneto-impedance effect. Acta Physica Sinica, 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [14] Chen Wei-Ping, Xiao Shu-Qin, Wang Wen-Jing, Jiang Shan, Liu Yi-Hua. Study on the giant magnetoimpedance effect of FeCuCrVSiB multilayered films. Acta Physica Sinica, 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [15] Wang Ai-Ling, Liu Jiang-Tao, Zhou Yun-Song, Jiang Hong-Wei, Zheng Wu. The magnetic anisotropic effect on giant magnetoimpedance in sandwiched films. Acta Physica Sinica, 2004, 53(3): 905-910. doi: 10.7498/aps.53.905
    [16] Liu Jiang-Tao, Zhou Yun-Song, Wang Ai-Ling, Jiang Hong-Wei, Zheng Wu. Theoretical study on the giant magnetoimpedance in coaxial-cable wire and sandwi ched film. Acta Physica Sinica, 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [17] ZHONG ZHI-YONG, LAN ZHONG-WEN, ZHANG HUAI-WU, LIU YING-LI, WANG HAO-CAI. COMPUTATION ON GIANT MAGNETO-IMPEDANCE EFFECTS IN FERROMAGNETIC/NON-FERROMAGNETIC/FERROMAGNETIC LAYERED THIN FILMS. Acta Physica Sinica, 2001, 50(8): 1610-1615. doi: 10.7498/aps.50.1610
    [18] He Jun, Guo Hui-Qun, Cheng Li-Zhi, Shen Bao-Gen, He Kai-Yuan, Liu Yi-Hua. The Giant Magneto-Impedance Effect of Current-Annealed Fe-Based Ribbons. Acta Physica Sinica, 1999, 48(13): 159-163. doi: 10.7498/aps.48.159
    [19] Xiao Shu-Qin, Liu Yi-Hua, Yan Shi-Shen, Dai You-Yong, Zhang Lin, Mei Liang-Mo. Magnetic Properties and Giant Magnetoimpednce Effects of FeCuNdSiB Single Layered and Sandwiched Films. Acta Physica Sinica, 1999, 48(13): 187-192. doi: 10.7498/aps.48.187
    [20] DONG ZHENG-CHAO. QUANTUM ANALYTICAL THEORY FOR GIANT MAGNETORESISTANCE IN A MAGNETIC SANDWICH STRUCTURE. Acta Physica Sinica, 1997, 46(9): 1801-1807. doi: 10.7498/aps.46.1801
Metrics
  • Abstract views:  7423
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  07 October 2018
  • Accepted Date:  04 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回