Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and analysis of thermo-structure for cryogenic radiometer

Zhuang Xin-Gang Liu Hong-Bo Zhang Peng-Ju Shi Xue-Shun Liu Chang-Ming Liu Hong-Yuan Wang Heng-Fei

Citation:

Design and analysis of thermo-structure for cryogenic radiometer

Zhuang Xin-Gang, Liu Hong-Bo, Zhang Peng-Ju, Shi Xue-Shun, Liu Chang-Ming, Liu Hong-Yuan, Wang Heng-Fei
cstr: 32037.14.aps.68.20181880
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Absolute cryogenic radiometer is built based on a new theory of electrical-substitution measurement, which is for measuring the radiant power by using the equivalent electrical power and has recently served as a primary standard for radiant power measurements. This study aims to design and implement a cryogenic radiometers to measure the optical power in a range from $0.1\;{\text{μ}}{\rm{W}}$ to 2 mW, which can substitute for the imported products. Intensive experiments are performed to study the thermal circuit of cryogenic radiometer, and systematically analyze the influences of cavity assembly and heat link materials on the responsivity and thermal time constant of cryogenic radiometer. On this basis, the thermo-structure mechanical parts are developed, which are comprised of a blackbody cavity, heat link and heat sink. Both the heat sink and the blackbody cavity are made of OFHC copper that is plated with gold. All surfaces are highly polished and reflective to reduce any radiative effects. The absorptance of the cavity can reach up to 0.999995 at 633 nm. And then, a characteristic parameters’ test system of cryogenic radiometer is built. Through optimizing the temperature control system and improving the design of the heat sink, the standard deviation of the heat sink can be kept under 0.2 mK for 30 min. By using that test system, the responsivity and thermal time constant of cryogenic radiometer with four different kinds of heat link materials (OHFC copper, 6061 Al, SS304 stainless steel, and polyimide) are tested experimentally. The experimental results show that the responsivity and thermal time constant are 35.5 K/W and 23 s for OHFC copper, 318.9 K/W and 106 s for 6061 Al, 434.8 K/W and 297 s for SS304 stainless steel, 714.8 K/W and 506 s for polyimide. As the thermal conductivity of heat link material changes, the two parameters of responsivity and thermal time constant will simultaneously change significantly. The responsivity and thermal time constant are a pair of mutually constrained parameters, and temperature stability is an important parameter for designing the thermo-structure. After increasing the responsivity, it will not only significantly increase the measurement time and resource consumption, but also affect the temperature control stability, and hence limiting the measurement accuracy. All the test data indicate that the characteristic parameter of cryogenic radiometer can be adjusted by changing the material and structure of heat link. The obtained results will have a certain reference value for the index distribution of cryogenic radiometer characteristic parameters and designing the next generation of absolute cryogenic radiometers.
      Corresponding author: Zhuang Xin-Gang, xingangzhuang@163.com
    • Funds: Project supported by the National Defense Science and Technology Foundation, China (Grant No. JSJL2016210A001).
    [1]

    Hoyt C C, Foukal P V 1991 Metrologia 28 163Google Scholar

    [2]

    Houston J M, Cromer C L, Hardis J E, Larason T C 1993 Metrologia 30 285Google Scholar

    [3]

    庞伟伟, 郑小兵, 李健军, 史学舜 2014 大气与环境光学学报 9 138Google Scholar

    Pang W W, Zheng X B, Li J J, Shi X S 2014 J. Atmosph. Environ. Opt. 9 138Google Scholar

    [4]

    Liu C M, Shi X H, Chen H D, Liu Y L, Zhao K, Ying C P, Chen K F, Li L G 2016 Acta Phot. Sin. 45 0912002Google Scholar

    [5]

    Goebel R, Pello R, Köhler R, Haycocks P, Fox N 1996 Metrologia 33 177Google Scholar

    [6]

    Carter A C, Lorentz S R, Jung T M, Datla R U 2005 Appl. Opt. 44 871Google Scholar

    [7]

    Houston J M, Rice J P 2006 Metrologia 43 S31Google Scholar

    [8]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2014 Rev. Sci. Instrum. 85 075105Google Scholar

    [9]

    Troussel P, Coron N 2010 Nucl. Instrum. Meth. A 614 260Google Scholar

    [10]

    Gamouras A, Todd A D W, Côté É, Rowell N L 2018 J. Phys. Conf. Ser. 972 012014Google Scholar

    [11]

    Yi X, Fang W, Luo Y, Xia Z, Wang Y 2016 IET Sci. Meas. Technol. 10 564Google Scholar

    [12]

    Tang X, Fang W, Wang Y P, Yang D J, Yi X L 2017 Optoelectron. Lett. 13 179Google Scholar

    [13]

    Zhao X, Zhao Y, Tang K, Zhao Y, Li F, Zheng L 2018 Rad. Dete. Technol. Meth. 2 32Google Scholar

    [14]

    Xu N, Lin Y, Gan H, Li J 2016 Proc. SPIE 10155 1015513Google Scholar

    [15]

    林延东, 吕亮, 白山 2011 光学学报 31 1212005

    Lin Y D, Lv L, Bai S 2011 Acta Opt. Sin. 31 1212005

    [16]

    李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏 2009 物理学报 58 6273Google Scholar

    Li J J, Zheng X B, Lu Y J, Xie P, Zou P 2009 Acta Phys. Sin. 58 6273Google Scholar

    [17]

    Pang W W, Zheng X B, Li J J, Shi X S, Wu H Y, Xia M P, Gao D Y, Shi J M, Qi T, Kang Q 2015 Chin. Opt. Lett. 13 051201Google Scholar

    [18]

    刘长明, 史学舜, 刘玉龙, 赵坤, 陈海东, 刘红博 2015 光电子·激光 26 667

    Liu C M, Shi X S, Liu Y L, Zhao K, Chen H D, Liu H B 2015 J. Optoelectron.·Laser 26 667

    [19]

    Shi X, Liu C, Liu Y, Yang L, Zhao K, Chen H 2015 Proc. SPIE 9449 94490UGoogle Scholar

    [20]

    杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第117页

    Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) p117 (in Chinese)

    [21]

    Prokhorov A V, Hanssen L M 2004 Metrologia 41 421Google Scholar

    [22]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2009 Proc. SPIE 7298 72983YGoogle Scholar

    [23]

    张绪德, 欧阳峥嵘 2008 低温与超导 36 9Google Scholar

    Zhang X D, Ouyang Z Y 2008 Cryogenics and Superconductivity 36 9Google Scholar

    [24]

    Gentile T R, Houston J M, Hardis J E, Cromer C L, Parr A C 1996 Appl. Opt. 35 1056Google Scholar

    [25]

    Pearson D A, Zhang Z M 1999 Cryogenics 39 299Google Scholar

  • 图 1  低温辐射计热路示意图

    Figure 1.  Schematic diagram of thermal circuit of cryogenic radiometer.

    图 2  零维问题传热模型

    Figure 2.  Heat-transfer model of zero dimensional problem.

    图 3  热结构仿真和实物图 (a)黑体腔; (b)热链; (c)热结构

    Figure 3.  Picture of thermal structure: (a) Blackbody cavity; (b) heat link; (c) heat sink.

    图 4  低温辐射计实物与特性参数测试原理图

    Figure 4.  Picture of cryogenic radiometer and schematic for characteristic parameters test.

    图 5  不同热链对应的低温辐射计响应曲线 (a) OFHC铜; (b) 6061铝; (c) SS304不锈钢; (d)聚酰亚胺

    Figure 5.  Response curve of cryogenic radiometer with different heat links: (a) OFHC copper; (b) 6061 Al; (c) SS304; (d) polymide.

    表 1  不同热链对应的低温辐射计特性参数

    Table 1.  Characteristic parameters of cryogenic radiometer corresponding to different heat links

    热链材料T0/KT/K$\tau /$sR/K·W–1
    OFHC铜10.989711.02522335.5
    6061铝21.104621.4235106318.9
    304不锈钢18.368818.8036297434.8
    聚酰亚胺25.532226.247506714.8
    DownLoad: CSV
  • [1]

    Hoyt C C, Foukal P V 1991 Metrologia 28 163Google Scholar

    [2]

    Houston J M, Cromer C L, Hardis J E, Larason T C 1993 Metrologia 30 285Google Scholar

    [3]

    庞伟伟, 郑小兵, 李健军, 史学舜 2014 大气与环境光学学报 9 138Google Scholar

    Pang W W, Zheng X B, Li J J, Shi X S 2014 J. Atmosph. Environ. Opt. 9 138Google Scholar

    [4]

    Liu C M, Shi X H, Chen H D, Liu Y L, Zhao K, Ying C P, Chen K F, Li L G 2016 Acta Phot. Sin. 45 0912002Google Scholar

    [5]

    Goebel R, Pello R, Köhler R, Haycocks P, Fox N 1996 Metrologia 33 177Google Scholar

    [6]

    Carter A C, Lorentz S R, Jung T M, Datla R U 2005 Appl. Opt. 44 871Google Scholar

    [7]

    Houston J M, Rice J P 2006 Metrologia 43 S31Google Scholar

    [8]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2014 Rev. Sci. Instrum. 85 075105Google Scholar

    [9]

    Troussel P, Coron N 2010 Nucl. Instrum. Meth. A 614 260Google Scholar

    [10]

    Gamouras A, Todd A D W, Côté É, Rowell N L 2018 J. Phys. Conf. Ser. 972 012014Google Scholar

    [11]

    Yi X, Fang W, Luo Y, Xia Z, Wang Y 2016 IET Sci. Meas. Technol. 10 564Google Scholar

    [12]

    Tang X, Fang W, Wang Y P, Yang D J, Yi X L 2017 Optoelectron. Lett. 13 179Google Scholar

    [13]

    Zhao X, Zhao Y, Tang K, Zhao Y, Li F, Zheng L 2018 Rad. Dete. Technol. Meth. 2 32Google Scholar

    [14]

    Xu N, Lin Y, Gan H, Li J 2016 Proc. SPIE 10155 1015513Google Scholar

    [15]

    林延东, 吕亮, 白山 2011 光学学报 31 1212005

    Lin Y D, Lv L, Bai S 2011 Acta Opt. Sin. 31 1212005

    [16]

    李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏 2009 物理学报 58 6273Google Scholar

    Li J J, Zheng X B, Lu Y J, Xie P, Zou P 2009 Acta Phys. Sin. 58 6273Google Scholar

    [17]

    Pang W W, Zheng X B, Li J J, Shi X S, Wu H Y, Xia M P, Gao D Y, Shi J M, Qi T, Kang Q 2015 Chin. Opt. Lett. 13 051201Google Scholar

    [18]

    刘长明, 史学舜, 刘玉龙, 赵坤, 陈海东, 刘红博 2015 光电子·激光 26 667

    Liu C M, Shi X S, Liu Y L, Zhao K, Chen H D, Liu H B 2015 J. Optoelectron.·Laser 26 667

    [19]

    Shi X, Liu C, Liu Y, Yang L, Zhao K, Chen H 2015 Proc. SPIE 9449 94490UGoogle Scholar

    [20]

    杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第117页

    Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) p117 (in Chinese)

    [21]

    Prokhorov A V, Hanssen L M 2004 Metrologia 41 421Google Scholar

    [22]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2009 Proc. SPIE 7298 72983YGoogle Scholar

    [23]

    张绪德, 欧阳峥嵘 2008 低温与超导 36 9Google Scholar

    Zhang X D, Ouyang Z Y 2008 Cryogenics and Superconductivity 36 9Google Scholar

    [24]

    Gentile T R, Houston J M, Hardis J E, Cromer C L, Parr A C 1996 Appl. Opt. 35 1056Google Scholar

    [25]

    Pearson D A, Zhang Z M 1999 Cryogenics 39 299Google Scholar

Metrics
  • Abstract views:  13377
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2018
  • Accepted Date:  07 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019
  • /

    返回文章
    返回