-
Absolute cryogenic radiometer is built based on a new theory of electrical-substitution measurement, which is for measuring the radiant power by using the equivalent electrical power and has recently served as a primary standard for radiant power measurements. This study aims to design and implement a cryogenic radiometers to measure the optical power in a range from
$0.1\;{\text{μ}}{\rm{W}}$ to 2 mW, which can substitute for the imported products. Intensive experiments are performed to study the thermal circuit of cryogenic radiometer, and systematically analyze the influences of cavity assembly and heat link materials on the responsivity and thermal time constant of cryogenic radiometer. On this basis, the thermo-structure mechanical parts are developed, which are comprised of a blackbody cavity, heat link and heat sink. Both the heat sink and the blackbody cavity are made of OFHC copper that is plated with gold. All surfaces are highly polished and reflective to reduce any radiative effects. The absorptance of the cavity can reach up to 0.999995 at 633 nm. And then, a characteristic parameters’ test system of cryogenic radiometer is built. Through optimizing the temperature control system and improving the design of the heat sink, the standard deviation of the heat sink can be kept under 0.2 mK for 30 min. By using that test system, the responsivity and thermal time constant of cryogenic radiometer with four different kinds of heat link materials (OHFC copper, 6061 Al, SS304 stainless steel, and polyimide) are tested experimentally. The experimental results show that the responsivity and thermal time constant are 35.5 K/W and 23 s for OHFC copper, 318.9 K/W and 106 s for 6061 Al, 434.8 K/W and 297 s for SS304 stainless steel, 714.8 K/W and 506 s for polyimide. As the thermal conductivity of heat link material changes, the two parameters of responsivity and thermal time constant will simultaneously change significantly. The responsivity and thermal time constant are a pair of mutually constrained parameters, and temperature stability is an important parameter for designing the thermo-structure. After increasing the responsivity, it will not only significantly increase the measurement time and resource consumption, but also affect the temperature control stability, and hence limiting the measurement accuracy. All the test data indicate that the characteristic parameter of cryogenic radiometer can be adjusted by changing the material and structure of heat link. The obtained results will have a certain reference value for the index distribution of cryogenic radiometer characteristic parameters and designing the next generation of absolute cryogenic radiometers.-
Keywords:
- cryogenic radiometer /
- thermo-structure /
- thermal time constant /
- responsivity
[1] Hoyt C C, Foukal P V 1991 Metrologia 28 163Google Scholar
[2] Houston J M, Cromer C L, Hardis J E, Larason T C 1993 Metrologia 30 285Google Scholar
[3] 庞伟伟, 郑小兵, 李健军, 史学舜 2014 大气与环境光学学报 9 138Google Scholar
Pang W W, Zheng X B, Li J J, Shi X S 2014 J. Atmosph. Environ. Opt. 9 138Google Scholar
[4] Liu C M, Shi X H, Chen H D, Liu Y L, Zhao K, Ying C P, Chen K F, Li L G 2016 Acta Phot. Sin. 45 0912002Google Scholar
[5] Goebel R, Pello R, Köhler R, Haycocks P, Fox N 1996 Metrologia 33 177Google Scholar
[6] Carter A C, Lorentz S R, Jung T M, Datla R U 2005 Appl. Opt. 44 871Google Scholar
[7] Houston J M, Rice J P 2006 Metrologia 43 S31Google Scholar
[8] Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2014 Rev. Sci. Instrum. 85 075105Google Scholar
[9] Troussel P, Coron N 2010 Nucl. Instrum. Meth. A 614 260Google Scholar
[10] Gamouras A, Todd A D W, Côté É, Rowell N L 2018 J. Phys. Conf. Ser. 972 012014Google Scholar
[11] Yi X, Fang W, Luo Y, Xia Z, Wang Y 2016 IET Sci. Meas. Technol. 10 564Google Scholar
[12] Tang X, Fang W, Wang Y P, Yang D J, Yi X L 2017 Optoelectron. Lett. 13 179Google Scholar
[13] Zhao X, Zhao Y, Tang K, Zhao Y, Li F, Zheng L 2018 Rad. Dete. Technol. Meth. 2 32Google Scholar
[14] Xu N, Lin Y, Gan H, Li J 2016 Proc. SPIE 10155 1015513Google Scholar
[15] 林延东, 吕亮, 白山 2011 光学学报 31 1212005
Lin Y D, Lv L, Bai S 2011 Acta Opt. Sin. 31 1212005
[16] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏 2009 物理学报 58 6273Google Scholar
Li J J, Zheng X B, Lu Y J, Xie P, Zou P 2009 Acta Phys. Sin. 58 6273Google Scholar
[17] Pang W W, Zheng X B, Li J J, Shi X S, Wu H Y, Xia M P, Gao D Y, Shi J M, Qi T, Kang Q 2015 Chin. Opt. Lett. 13 051201Google Scholar
[18] 刘长明, 史学舜, 刘玉龙, 赵坤, 陈海东, 刘红博 2015 光电子·激光 26 667
Liu C M, Shi X S, Liu Y L, Zhao K, Chen H D, Liu H B 2015 J. Optoelectron.·Laser 26 667
[19] Shi X, Liu C, Liu Y, Yang L, Zhao K, Chen H 2015 Proc. SPIE 9449 94490UGoogle Scholar
[20] 杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第117页
Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) p117 (in Chinese)
[21] Prokhorov A V, Hanssen L M 2004 Metrologia 41 421Google Scholar
[22] Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2009 Proc. SPIE 7298 72983YGoogle Scholar
[23] 张绪德, 欧阳峥嵘 2008 低温与超导 36 9Google Scholar
Zhang X D, Ouyang Z Y 2008 Cryogenics and Superconductivity 36 9Google Scholar
[24] Gentile T R, Houston J M, Hardis J E, Cromer C L, Parr A C 1996 Appl. Opt. 35 1056Google Scholar
[25] Pearson D A, Zhang Z M 1999 Cryogenics 39 299Google Scholar
-
表 1 不同热链对应的低温辐射计特性参数
Table 1. Characteristic parameters of cryogenic radiometer corresponding to different heat links
热链材料 T0/K T/K $\tau /$s R/K·W–1 OFHC铜 10.9897 11.0252 23 35.5 6061铝 21.1046 21.4235 106 318.9 304不锈钢 18.3688 18.8036 297 434.8 聚酰亚胺 25.5322 26.247 506 714.8 -
[1] Hoyt C C, Foukal P V 1991 Metrologia 28 163Google Scholar
[2] Houston J M, Cromer C L, Hardis J E, Larason T C 1993 Metrologia 30 285Google Scholar
[3] 庞伟伟, 郑小兵, 李健军, 史学舜 2014 大气与环境光学学报 9 138Google Scholar
Pang W W, Zheng X B, Li J J, Shi X S 2014 J. Atmosph. Environ. Opt. 9 138Google Scholar
[4] Liu C M, Shi X H, Chen H D, Liu Y L, Zhao K, Ying C P, Chen K F, Li L G 2016 Acta Phot. Sin. 45 0912002Google Scholar
[5] Goebel R, Pello R, Köhler R, Haycocks P, Fox N 1996 Metrologia 33 177Google Scholar
[6] Carter A C, Lorentz S R, Jung T M, Datla R U 2005 Appl. Opt. 44 871Google Scholar
[7] Houston J M, Rice J P 2006 Metrologia 43 S31Google Scholar
[8] Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2014 Rev. Sci. Instrum. 85 075105Google Scholar
[9] Troussel P, Coron N 2010 Nucl. Instrum. Meth. A 614 260Google Scholar
[10] Gamouras A, Todd A D W, Côté É, Rowell N L 2018 J. Phys. Conf. Ser. 972 012014Google Scholar
[11] Yi X, Fang W, Luo Y, Xia Z, Wang Y 2016 IET Sci. Meas. Technol. 10 564Google Scholar
[12] Tang X, Fang W, Wang Y P, Yang D J, Yi X L 2017 Optoelectron. Lett. 13 179Google Scholar
[13] Zhao X, Zhao Y, Tang K, Zhao Y, Li F, Zheng L 2018 Rad. Dete. Technol. Meth. 2 32Google Scholar
[14] Xu N, Lin Y, Gan H, Li J 2016 Proc. SPIE 10155 1015513Google Scholar
[15] 林延东, 吕亮, 白山 2011 光学学报 31 1212005
Lin Y D, Lv L, Bai S 2011 Acta Opt. Sin. 31 1212005
[16] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏 2009 物理学报 58 6273Google Scholar
Li J J, Zheng X B, Lu Y J, Xie P, Zou P 2009 Acta Phys. Sin. 58 6273Google Scholar
[17] Pang W W, Zheng X B, Li J J, Shi X S, Wu H Y, Xia M P, Gao D Y, Shi J M, Qi T, Kang Q 2015 Chin. Opt. Lett. 13 051201Google Scholar
[18] 刘长明, 史学舜, 刘玉龙, 赵坤, 陈海东, 刘红博 2015 光电子·激光 26 667
Liu C M, Shi X S, Liu Y L, Zhao K, Chen H D, Liu H B 2015 J. Optoelectron.·Laser 26 667
[19] Shi X, Liu C, Liu Y, Yang L, Zhao K, Chen H 2015 Proc. SPIE 9449 94490UGoogle Scholar
[20] 杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第117页
Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) p117 (in Chinese)
[21] Prokhorov A V, Hanssen L M 2004 Metrologia 41 421Google Scholar
[22] Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2009 Proc. SPIE 7298 72983YGoogle Scholar
[23] 张绪德, 欧阳峥嵘 2008 低温与超导 36 9Google Scholar
Zhang X D, Ouyang Z Y 2008 Cryogenics and Superconductivity 36 9Google Scholar
[24] Gentile T R, Houston J M, Hardis J E, Cromer C L, Parr A C 1996 Appl. Opt. 35 1056Google Scholar
[25] Pearson D A, Zhang Z M 1999 Cryogenics 39 299Google Scholar
Catalog
Metrics
- Abstract views: 8609
- PDF Downloads: 82
- Cited By: 0