Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling and analyzing of time-resolved satellite infrared spectrum based on ground-based detector

Gu Mu Ren Qi-Feng Zhou Jin-Mei Liao Sheng

Citation:

Modeling and analyzing of time-resolved satellite infrared spectrum based on ground-based detector

Gu Mu, Ren Qi-Feng, Zhou Jin-Mei, Liao Sheng
PDF
HTML
Get Citation
  • Satellite infrared spectra based on ground-based detector are affected by complex factors such as satellite surface temperature, solar radiation, observation angle, etc, whose change cannot be detected in external field experiment. Therefore, it is impossible to analyze what are the main factors that affect the satellite infrared spectra. At the same time, due to the lack of physical information about the satellites through the external field experiment, the validity and physical significance of retrieving features from satellite infrared spectrum cannot be explained. In view of the above problem, a method to model and analyze satellite thermal infrared spectra based on ground-based detector is proposed. It is a feasible research method to accurately establish satellite thermal infrared spectrum model based on the ground detection, then to analyze the simulated infrared spectrum data. Firstly, considering the solar radiation, earth radiation, detectable range of the satellite on the detector, observation angle, atmospheric attenuation, etc., the satellite thermal infrared spectrum model can be established more accurately. Then, taking FY-3 satellite for example, the physical and orbital parameters of the satellite are set up, and the 3−14${\text{μ}}{\rm m}$ infrared irradiance of the satellite on the pupil of the detector is calculated by using the model. Meanwhile, the main factors affecting the infrared spectrum of the satellite are analyzed. Finally, the equivalent temperature and equivalent area are extracted by fitting the satellite infrared spectrum with the Planck formula. And they are compared with the physical properties of the satellite. The results show that among the various factors, with the satellite’ movement, the change of the visible state of the satellite induced by the satellite’s movement is the main factor that affects the satellite infrared spectrum. The physical meanings of the equivalent temperature and equivalent area can also be explained effectively. The equivalent temperature is close to the temperatures of the solar panels, and their temperature difference is only about 15 K. The change of equivalent area is consistent with that of the satellite projected area. Moreover, it is also found that there is a large temperature difference between the solar panels and the body, which makes their infrared spectra obviously different. Therefore, it is hopeful to obtain the areas and temperatures of the solar panels and the body respectively. This research can make up for the shortcomings of the external field experiments and promote the monitoring and recognizing of satellites by ground-based infrared detectors.
      Corresponding author: Liao Sheng, shenliaoioe@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61501429).
    [1]

    孙成明, 赵飞, 袁艳 2015 物理学报 64 034202Google Scholar

    Sun C M, Zhao F, Yuan Y 2015 Acta Phys. Sin. 64 034202Google Scholar

    [2]

    Fulcoly D, Kalamaroff K, Chun F 2012 J. Spacecr. Rockets 49 76Google Scholar

    [3]

    Lynch D, Russell R, Gutierrez D, et al. 2006 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 10–14, 2006

    [4]

    徐灿, 张雅声, 赵阳生, 李鹏 2017 光谱学与光谱分析 37 672

    Xu C, Zhang Y S, Zhao Y S, Li P 2017 Spectrosc. Spect. Anal. 37 672

    [5]

    Skinner M, Payne T, Russell R, et al. 2007 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 12–15, 2007

    [6]

    Skinner M, Russell R, Rudy R, et al. 2009 Proceedings of the International Astronomical Congress 60th Meeting Daejeon, Republic of Korea, October 12–16, 2009 p1791

    [7]

    Skinner M, Russell R, Kelecy T, et al. 2014 Acta Astronaut. 105 1

    [8]

    Skinner M, Russell R, Kelecy T, et al. 2014 Proceedings of the International Astronomical Congress 65th Meeting Toronto, Canada, September 9, 2014 p1188

    [9]

    张伟清 2006 博士学位论文 (南京: 南京理工大学)

    Zhang W Q 2006 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [10]

    张永阳 2007 硕士学位论文 (南京: 南京理工大学)

    Zhang Y Y 2007 M.S. Thesis (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [11]

    马伟 2011 博士学位论文 (南京: 南京理工大学)

    Ma W 2011 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [12]

    孙成明, 袁艳, 张修宝 2010 物理学报 59 7523Google Scholar

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523Google Scholar

    [13]

    王雨飞, 李强, 廖胜 2011 红外与激光工程 40 2085Google Scholar

    Wang Y, Li Q, Liao S 2011 Infrar. Laser Eng. 40 2085Google Scholar

    [14]

    汪洪源, 陈赟 2016 红外与激光工程 45 504002

    Wang H Y, Chen Y 2016 Infrar. Laser Eng. 45 504002

    [15]

    李文豪, 刘朝晖, 穆猷, 等 2017 红外与激光工程 46 604003

    Li W H, Liu Z H, Mu Y, et al. 2017 Infrar. Laser Eng. 46 604003

    [16]

    谈和平, 夏新林, 刘林华, 阮立明 2006 红外辐射特性与传输的数值计(哈尔滨: 哈尔滨工业大学出版社) 第 378页

    Tan H P, Xia X L, Liu L H, Ruan L M 2006 Numerical Calculation of Infrared Radiation Characteristics and Transmission (Harbin: Harbin Institute of Technology Press) p378 (in Chinese)

    [17]

    王先起, 廖胜, 沈忙作, 黄建明 2005 光电工程 32 5Google Scholar

    Wang X Q, Liao S, Shen M Z, Huang J M 2005 Opto-Electronic Engineering 32 5Google Scholar

    [18]

    殷丽梅, 刘俊池, 王建立, 等 2014 光子学报 43 1204004

    Yin L M, Liu J C, Wang J L, et al. 2014 Acta Phot. Sin. 43 1204004

    [19]

    刘莹奇, 刘祥意 2014 光学学报 34 0512003

    Liu Y, Liu X 2014 Acta Opt. Sin. 34 0512003

    [20]

    Skinner M, Russell R, Kelecy T, et al. 2012 Acta Astronaut. 80 154Google Scholar

  • 图 1  地面探测器可观测区域

    Figure 1.  Ground-based detector observable area.

    图 2  卫星的面元与探测器入瞳的几何位置关系

    Figure 2.  The geometric position of facet and detector entrance pupil.

    图 3  风云三号卫星的简化几何模型

    Figure 3.  the crude geometric structure model of the FY-3 satellite.

    图 4  在观测期间, (a) 风云三号卫星对地面探测器的倾角和斜距, (b)卫星各面法线与探测器连线的夹角余弦, (c)风云三号卫星的模拟温度场, (d)风云三号卫星在探测器上的红外光谱辐照度和BASS系统实测的地球同步卫星红外光谱[3]

    Figure 4.  During the observation period, (a) the elevation angle and range of the FY-3 satellite to ground-based detector, (b) the angle cosine between the normal of satellite’s side and the direction of detector, (c) the simulated temperature field of the FY-3 satellite, (d) the infrared spectral irradiance of the FY-3 satellite on the detector and the infrared spectral irradiance of geosynchronous satellite measured by BASS.

    图 5  在观测期间, (a)等效温度与太阳帆板温度的比较, (b)等效面积和卫星对探测器的投影面积的比较

    Figure 5.  During the observation period, (a) the comparison of the color temperature of n = 1 and solar panel temperature, (b) the comparison of the emissivity·projected area of n = 1 and satellite’s projected area.

    图 6  在观测期间, (a)较高温度和卫星帆板温度的比较, (b)较高温度对应的面积和帆板面积的比较, 整体面积和卫星对探测器投影面积的比较

    Figure 6.  During the observation period, (a) the comparison of the higher temperature of n = 2 and solar panel temperature, (b) the comparison of the area corresponding to higher temperature and the area of solar panel, the comparison of the sum of the areas of n = 2 and the projection area of the satellite to the detector.

    表 1  风云三号卫星的物性参数

    Table 1.  Physical parameters of the FY-3 satellite.

    部件名称几何尺寸/mm材料发射率吸收率
    卫星本体4460 × 2200 × 3790F46聚酯薄膜0.810.1
    太阳帆板40 × 7800 × 3790背面SR107白漆0.870.17
    正面太阳电池0.860.9
    侧面有机黑漆0.880.93
    DownLoad: CSV

    表 2  风云三号卫星的轨道参数

    Table 2.  Orbital parameters of the FY-3 satellite.

    轨道半长轴/km偏心率倾角/(°)升交点赤经/(°)降交点地方时周期/min
    72070.00198.515010:00102
    DownLoad: CSV
  • [1]

    孙成明, 赵飞, 袁艳 2015 物理学报 64 034202Google Scholar

    Sun C M, Zhao F, Yuan Y 2015 Acta Phys. Sin. 64 034202Google Scholar

    [2]

    Fulcoly D, Kalamaroff K, Chun F 2012 J. Spacecr. Rockets 49 76Google Scholar

    [3]

    Lynch D, Russell R, Gutierrez D, et al. 2006 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 10–14, 2006

    [4]

    徐灿, 张雅声, 赵阳生, 李鹏 2017 光谱学与光谱分析 37 672

    Xu C, Zhang Y S, Zhao Y S, Li P 2017 Spectrosc. Spect. Anal. 37 672

    [5]

    Skinner M, Payne T, Russell R, et al. 2007 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 12–15, 2007

    [6]

    Skinner M, Russell R, Rudy R, et al. 2009 Proceedings of the International Astronomical Congress 60th Meeting Daejeon, Republic of Korea, October 12–16, 2009 p1791

    [7]

    Skinner M, Russell R, Kelecy T, et al. 2014 Acta Astronaut. 105 1

    [8]

    Skinner M, Russell R, Kelecy T, et al. 2014 Proceedings of the International Astronomical Congress 65th Meeting Toronto, Canada, September 9, 2014 p1188

    [9]

    张伟清 2006 博士学位论文 (南京: 南京理工大学)

    Zhang W Q 2006 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [10]

    张永阳 2007 硕士学位论文 (南京: 南京理工大学)

    Zhang Y Y 2007 M.S. Thesis (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [11]

    马伟 2011 博士学位论文 (南京: 南京理工大学)

    Ma W 2011 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [12]

    孙成明, 袁艳, 张修宝 2010 物理学报 59 7523Google Scholar

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523Google Scholar

    [13]

    王雨飞, 李强, 廖胜 2011 红外与激光工程 40 2085Google Scholar

    Wang Y, Li Q, Liao S 2011 Infrar. Laser Eng. 40 2085Google Scholar

    [14]

    汪洪源, 陈赟 2016 红外与激光工程 45 504002

    Wang H Y, Chen Y 2016 Infrar. Laser Eng. 45 504002

    [15]

    李文豪, 刘朝晖, 穆猷, 等 2017 红外与激光工程 46 604003

    Li W H, Liu Z H, Mu Y, et al. 2017 Infrar. Laser Eng. 46 604003

    [16]

    谈和平, 夏新林, 刘林华, 阮立明 2006 红外辐射特性与传输的数值计(哈尔滨: 哈尔滨工业大学出版社) 第 378页

    Tan H P, Xia X L, Liu L H, Ruan L M 2006 Numerical Calculation of Infrared Radiation Characteristics and Transmission (Harbin: Harbin Institute of Technology Press) p378 (in Chinese)

    [17]

    王先起, 廖胜, 沈忙作, 黄建明 2005 光电工程 32 5Google Scholar

    Wang X Q, Liao S, Shen M Z, Huang J M 2005 Opto-Electronic Engineering 32 5Google Scholar

    [18]

    殷丽梅, 刘俊池, 王建立, 等 2014 光子学报 43 1204004

    Yin L M, Liu J C, Wang J L, et al. 2014 Acta Phot. Sin. 43 1204004

    [19]

    刘莹奇, 刘祥意 2014 光学学报 34 0512003

    Liu Y, Liu X 2014 Acta Opt. Sin. 34 0512003

    [20]

    Skinner M, Russell R, Kelecy T, et al. 2012 Acta Astronaut. 80 154Google Scholar

  • [1] Chen Si, Zhang Hai-Yang, Jin Fa-Hong, Wang Lin, Zhao Chang-Ming. Research on multi-dimensional micro-motion feature extraction of moving targets. Acta Physica Sinica, 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [2] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [3] Sun Yong-Feng, Xu Liang, Shen Xian-Chun, Wang Yu-Hao, Xu Han-Yang, Liu Wen-Qing. Calibration method of instrument line shape for infrared radiometer. Acta Physica Sinica, 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [4] Zeng Xiang-Yu, Wang Wei, Liu Cheng, Shan Chang-Gong, Xie Yu, Hu Qi-Hou, Sun You-Wen, Polyakov Alexander Viktorovich. Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy. Acta Physica Sinica, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [5] Wang Shu-Chao, Su Xiu-Qin, Zhu Wen-Hua, Chen Song-Mao, Zhang Zhen-Yang, Xu Wei-Hao, Wang Ding-Jie. A time-correlated single photon counting signal denoising method based on elastic variational mode extraction. Acta Physica Sinica, 2021, 70(17): 174304. doi: 10.7498/aps.70.20210149
    [6] Xu Zi-Fei, Miao Wei-Pao, Li Chun, Jin Jiang-Tao, Li Shu-Jun. Nonlinear feature extraction and chaos analysis of flow field. Acta Physica Sinica, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [7] Li Hong, Wu Wei, Yang Xiao-Min, Yan Bin-Yu, Liu Kai, Gwanggil Jeon. Multispectral image enhancement based on Retinex by using structure extraction. Acta Physica Sinica, 2016, 65(16): 160701. doi: 10.7498/aps.65.160701
    [8] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [9] Sun Cheng-Ming, Zhao Fei, Yuan Yan. Feature extraction and recognition of non-resolved space object from space-based spectral data. Acta Physica Sinica, 2015, 64(3): 034202. doi: 10.7498/aps.64.034202
    [10] Gao Peng, Wang Chao, Zhi Ya, Li Yang, Wang Li-Bin, Cong Zheng. Extraction of nonlinear characteristics from eddy current magnetic field of Al-alloy weld and their classification. Acta Physica Sinica, 2014, 63(13): 134103. doi: 10.7498/aps.63.134103
    [11] Lu Zhi-Ying, Liu Hai, Jia Hui-Zhen, Yin Jing. Recognition of hail and rainstorm based on the radar reflectivity image features. Acta Physica Sinica, 2014, 63(18): 189201. doi: 10.7498/aps.63.189201
    [12] Li Kun, Fang Shi-Liang, An Liang. Studies on mode feature extraction and source range and depth estimation with a single hydrophone based on the dispersion characteristic. Acta Physica Sinica, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [13] Qi Hao, Wang Fu-Bao, Deng Hong. A novel approach to research on feature extraction of seismic wave signal based on wireless sensor networks. Acta Physica Sinica, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [14] Zheng An-Zong, Leng Yong-Gang, Fan Sheng-Bo. Features extraction based on singular value decomposition and stochastic resonance. Acta Physica Sinica, 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [15] Bian Hong-Rui, Wang Jiang, Han Chun-Xiao, Deng Bin, Wei Xi-Le, Che Yan-Qiu. Features extraction from EEG signals induced by acupuncture based on the complexity analysis. Acta Physica Sinica, 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [16] Liu Xiao-Dong, Tao Wan-Jun, Hagihala Masato, Guo Qi-Xin, Meng Dong-Dong, Zhang Sen-Lin, Zheng Xu-Guang. Mid-infrared spectroscopic properties of geometrically frustrated basic cobalt chlorides. Acta Physica Sinica, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [17] Liu Hui, Yang Jun-An, Wang Yi. A novel approach to research on feature extraction of acoustictargets based on manifold learning. Acta Physica Sinica, 2011, 60(7): 074302. doi: 10.7498/aps.60.074302
    [18] Guo Yi, Guo Yong-Ming, Liu Yang-Yang, Han Chun-Xiao, Wang Jiang, Che Yan-Qiu, Deng Bin. Nonlinear characteristics extraction from electrical signals of dorsal spinal nerve root evoked by acupuncture at Zusanli point. Acta Physica Sinica, 2010, 59(8): 5880-5887. doi: 10.7498/aps.59.5880
    [19] Meng Qing-Fang, Zhou Wei-Dong, Chen Yue-Hui, Peng Yu-Hua. The feature extraction of epileptic EEG signals based on nonlinear prediction. Acta Physica Sinica, 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
    [20] ZHOU QING. GREEN FUNCTION METHOD FOR CALCULATING INFRARED SPECTRUM OF ONE-DIMENSIONAL TWO-BLOCK CRYSTAL. Acta Physica Sinica, 1984, 33(2): 193-201. doi: 10.7498/aps.33.193
Metrics
  • Abstract views:  6542
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2018
  • Accepted Date:  10 January 2019
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回