Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces

Chen Lu Li Ye-Fei Zheng Qiao-Ling Liu Qing-Kun Gao Yi-Min Li Bo Zhou Chang-Meng

Citation:

Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces

Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng
PDF
HTML
Get Citation
  • NiTi shape memory alloy has been widely used in industrial and biological fields due to its excellent mechanical properties, unique shape memory effect and superelasticity. In this paper, the atomic relaxation, thermodynamic energy, structural stability, electronic structures and other properties of all low-index surfaces of B2- and B19'-NiTi alloys are systematically studied by using the first principles calculations based on density functional theory. The calculated results show that the atomic relaxations on all low-index surfaces of both B2- and B19'-NiTi alloys are mainly concentrated in 2−3 atomic layers on the surface, which means that the surface effect is mainly confined in two or three layers on the surface configuration. In addition, the atomic relaxation of Ti-terminated surface is most remarkable, and followed by Ni-terminated surface, while the atomic relaxation of Ni&Ti-terminated surface is insignificant. Furthermore, the valence charge density decays rapidly from the surface configuration to the vacuum layer.  The calculation results of surface energy show that surface energy is inversely related to the coordinate number, and surface stability increases with the coordination number increasing. For B2- and B19'-NiTi, the surface energy of non-dense and non-stoichiometric surface depend on the chemical potential of Ti, and the surface energy is high. Therefore, the stabilities of these surfaces change with the chemical potential of Ti increasing. However, the surface energy values of dense surface configurations with stoichiometric ratio for B2-NiTi (101) and B19'-NiTi (010) are 1.81 J/m2 and 1.93 J/m2, respectively, which are both lower than those for other non-dense surfaces in the most Ti chemical potentials range, showing excellent structural stability. Moreover, the electron density analysis indicates that the dominant bonding for B2-NiTi (101) surface is the chained Ni-Ti-Ni metallic bond, the distribution of electrons and the distance between Ni and Ti atoms on the B2-NiTi (101) surface are more uniform and smaller, respectively, than those for B19'-NiTi (010) surface. In summary, the B2-NiTi (101) surface shows the high stability.
      Corresponding author: Li Ye-Fei, liyefei@xjtu.edu.cn
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant No. 51501139), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JM5002), the Guangxi Innovation Driven Development Project, China (Grant No. GUIKEAA18242001), the Science and Technology Project Fund of Guangdong Province, China (Grant No. 2015B010122003), the Guangzhou Science and Technology Project Fund, China (Grant No.201604046009), and the China Postdoctoral Science Foundation (Grant Nos. 2018M631152, 2018T111051).
    [1]

    马蕾, 王旭, 尚家香 2014 物理学报 63 233103Google Scholar

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103Google Scholar

    [2]

    吴红丽, 赵新青, 宫声凯 2010 物理学报 59 515Google Scholar

    Wu H L, Zhao X Q, Gong S K 2010 Acta Phys. Sin. 59 515Google Scholar

    [3]

    Wagner M F X, Windl W 2008 Acta. Mater. 56 6232Google Scholar

    [4]

    Huang X Y, Bungaro C, Godlevsky V, Rabe K M 2001 Phys. Rev. B 65 014108Google Scholar

    [5]

    Fukuda T, Kakeshita T, Houjoh H, Shiraishi S, Saburi T 1999 Mater. Sci. Eng. A 273−275 166

    [6]

    贾堤, 董治中, 于申军, 刘文西 1998 原子与分子物理学报 15 421

    Jia D, Dong Z Z, Yu S J, Liu W X 1998 J. Atom. Mol. Phys. Sin. 15 421

    [7]

    姜振益, 李盛涛 2006 物理学报 55 6032Google Scholar

    Jiang Z Y, Li S T 2006 Acta Phys. Sin. 55 6032Google Scholar

    [8]

    Hua Y J, Liu X, Meng C G, Yang D Z 2003 J. Wuhan. Univ. Technol. 18 6

    [9]

    朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明 2008 物理学报 57 7204Google Scholar

    Zhu J X, Li Y H, Meng F L, Liu C S, Zheng W T, Wang Y M 2008 Acta Phys. Sin. 57 7204Google Scholar

    [10]

    单迪, 何鑫玉, 方长青, 邵晖 2015 材料导报A: 综述篇 29 28

    Shan D, He X Y, Fang C Q, Shao H 2015 Mater. Rev. A 29 28

    [11]

    尹大宇, 朱锦宇, 段永宏, 李矛, 韩建业, 朱庆生 2011 华南国防医学杂志 25 52

    Yin D Y, Zhu J Y, Duan Y H, Li M, Han J Y, Zhu Q S 2011 Milit. Medi. J. Sou. China 25 52

    [12]

    孔祥确, 金学军, 刘剑楠 2016 功能材料 47 1007Google Scholar

    Kong X Q, Jin X J, Liu J N 2016 Func. Mater. 47 1007Google Scholar

    [13]

    邵明增, 崔春娟, 杨洪波 2018 材料导报A: 综述篇 32 1181

    Shao M Z, Cui C J, Yang H B 2018 Mater. Rev. A 32 1181

    [14]

    杨贤金, 朱胜利, 崔振铎, 姚康德 2001 功能材料 32 154Google Scholar

    Yang X J, Zhu S L, Cui Z D, Yao K D 2001 Func. Mater. 32 154Google Scholar

    [15]

    Qiu D L, Wang A P, Yin Y S 2010 Appl. Surf. Sci. 257 1774Google Scholar

    [16]

    Li Y F, Tang S L, Gao Y M, Ma S Q, Zheng Q L, Cheng Y H 2017 Int. J. Mod. Phys. B 31 1750161Google Scholar

    [17]

    Nigussa K N, Støvneng J A 2011 Comput. Phys. Commun. 182 1979Google Scholar

    [18]

    Vishnu K G, Strachan A 2012 Phys. Rev. B 85 014114Google Scholar

    [19]

    Sandoval L, Haskins J B, Lawson J W 2018 Acta Mater. 154 182Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [22]

    Li G F, Zheng H Z, Shu X Y, Peng P 2016 Met. Mater. Int. 22 69Google Scholar

    [23]

    Pfetzing-Micklich J, Somsen C, Dlouhy A, Begau C, Hartmaier A, Wagner M F X, Eggeler G 2013 Acta Mater. 61 602Google Scholar

    [24]

    Mercier O, Melton K N, Gremaud G, Häji J 1980 J. Appl. Phys. 51 1833Google Scholar

    [25]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 80 144203Google Scholar

    [26]

    Sestak P, Cerny M, Pokluda J 2008 Strength. Mater. 40 12Google Scholar

    [27]

    Sedlak P, Frost M, Kruisova A, Hirmanova K, Heller L, Sittner P 2014 J.Mater. Eng. Perf. 23 2591Google Scholar

    [28]

    Zeng Z Y, Hu C E, Cai L C, Chen X R, Jing F Q 2010 Physica B 405 3665Google Scholar

    [29]

    Fiorentini V, Methfessel M 1996 J. Phys-Condens. Mat. 8 6525Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409Google Scholar

  • 图 1  NiTi合金的低指数表面原子构型 (a) B2-NiTi(101)_NiTi; (b) B2-NiTi_Ni; (100); (c) B2-NiTi(111)_Ni; (d) B19’-NiTi(010)_NiTi; (e) B19'-NiTi(001)_Ni; (f) B19'-NiTi(110)_Ni; 绿色球和黑色球分别代表Ni, Ti原子

    Figure 1.  Atomic low-index surface configurations of NiTi alloy: (a) B2-NiTi(101)_NiTi; (b) B2-NiTi(100)_Ni; (c) B2-NiTi(111)_Ni; (d) B19’-NiTi(010)_NiTi; (e) B19'-NiTi(001)_Ni; (f) B19'-NiTi(110)_Ni.

    图 2  NiTi合金的DOS曲线 (a)B2-NiTi; (b)B19'-NiTi

    Figure 2.  DOS curves for NiTi alloys: (a) B2-NiTi; (b) B19'-NiTi.

    图 3  富Ti条件下表面能随表面构型原子层数目变化曲线 (a) B2-NiTi; (b) B19'-NiTi

    Figure 3.  Under the condition of Ti-rich, the surface energy varies with the number of atomic layers of the surface configuration: (a) B2-NiTi; (b) B19'-NiTi.

    图 4  B2-NiTi和B19'-NiTi体相密排面的电荷密度分布 (a) B2-NiTi (101); (b) B19'-NiTi (010)

    Figure 4.  Charge density distribution of dense plane of bulk B2-NiTi and B19'-NiTi: (a) B2-NiTi (101); (b) B19'-NiTi (010).

    图 5  非化学计量比表面的表面能随Ti化学势的变化 (a) B2-NiTi; (b) B19'-NiTi

    Figure 5.  Surface energies of non-stoichiometric surface versus Ti chemical potentials: (a) B2-NiTi; (b) B19'-NiTi.

    图 6  B2-和B19'-NiTi体相总DOS和表面构型层投影DOS曲线 (a) B2-NiTi (100)_Ni; (b) B19'-NiTi (010)_NiTi; (c) B2-NiTi (101)_NiTi; (d) B19'-NiTi (101)_Ni; (e) B2-NiTi (111)_Ni; (f) B19'-NiTi (111)_Ni

    Figure 6.  Total DOS of B2 and B19'-NiTi body phase and surface configurations layer projected DOS curves: (a) B2-NiTi (100)_Ni; (b) B19'-NiTi (010)_NiTi; (c) B2-NiTi (101)_NiTi; (d) B19'-NiTi (101)_Ni; (e) B2-NiTi (111)_Ni; (f) B19'-NiTi (111)_Ni.

    图 7  B2-和B19'-NiTi表面构型总电子密度分布 (a) B2-NiTi (101)_NiTi; (b) B2-NiTi (111)_Ni; (c) B19'-NiTi (010)_NiTi; (d) B19'-NiTi (101)_Ni

    Figure 7.  Total electron density distribution of B2- and B19'-NiTi surface configurations: (a) B2-NiTi (101)_NiTi; (b) B2-NiTi (111)_Ni; (c) B19'-NiTi (010)_NiTi; (d) B19'-NiTi (101)_Ni.

    表 1  NiTi合金的晶格常数、密度、剪切模量、体模量及生成焓

    Table 1.  Calculated cell parameters, density, shear modulus, bulk modulus and formation enthalpy.

    CompoundsabcV3G/MPaB/MPa${\Delta _{\rm{r}}}H$/eV·atom–1
    B2-NiTi3.015 (3.033a, 3.016b, 3.01c)27.402 (27.901a, 27.434b, 27.27c)69.0 (73d)155.5 (142.3a, 150.0b, 142e)–0.374 (–0.35f)
    B19'-NiTi4.646 (4.685g, 4.813h, 4.631i)4.108 (4.035g, 4.121h, 4.10i)2.898 (2.941g, 3.007h, 2.885i)55.705 (55.080g, 58.610h, 54.84i)26.2 (23j)148.9 (147k, 158f)–0.328
    注: a, b, d, g, h, j, k为理论参考值, Ref.[21-22,23,3,26,27-28]; c, 实验参考值, Inorganic Crystal Structure Database (ICSD) #105413; e, 实验参考值Ref.[24]; f, 实验参考值, Ref.[25]; i, 实验参考值, ICSD #240195.
    DownLoad: CSV

    表 2  B2-NiTi表面原子层位移相对体相间距的变化率随切片厚度的变化 (%)

    Table 2.  Relaxations of B2-NiTi surfaces with different terminations and slab thickness given in terms of the change of interlayer spacing in percent of the bulk spacing (%).

    SurfaceTerminationInterlayerSlab thickness
    357911
    (101)Ni, Ti${\varDelta _{12}}$–9.67–10.42–9.99–9.88–9.91
    ${\varDelta _{23}}$–0.191.181.991.78
    ${\varDelta _{34}}$–0.83–0.65–0.47
    ${\varDelta _{45}}$0.431.15
    ${\varDelta _{56}}$0.57
    (100)Ni${\varDelta _{12}}$–1.77–8.13–8.89–8.78–8.93
    ${\varDelta _{23}}$3.853.482.792.76
    ${\varDelta _{34}}$–0.72–0.410.17
    ${\varDelta _{45}}$1.11–0.37
    ${\varDelta _{56}}$2.18
    Ti${\varDelta _{12}}$–2.24–21.68–17.08–15.16–16.68
    ${\varDelta _{23}}$15.4212.147.1110.78
    ${\varDelta _{34}}$0.014.032.82
    ${\varDelta _{45}}$–5.72–1.93
    ${\varDelta _{56}}$1.53
    DownLoad: CSV
  • [1]

    马蕾, 王旭, 尚家香 2014 物理学报 63 233103Google Scholar

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103Google Scholar

    [2]

    吴红丽, 赵新青, 宫声凯 2010 物理学报 59 515Google Scholar

    Wu H L, Zhao X Q, Gong S K 2010 Acta Phys. Sin. 59 515Google Scholar

    [3]

    Wagner M F X, Windl W 2008 Acta. Mater. 56 6232Google Scholar

    [4]

    Huang X Y, Bungaro C, Godlevsky V, Rabe K M 2001 Phys. Rev. B 65 014108Google Scholar

    [5]

    Fukuda T, Kakeshita T, Houjoh H, Shiraishi S, Saburi T 1999 Mater. Sci. Eng. A 273−275 166

    [6]

    贾堤, 董治中, 于申军, 刘文西 1998 原子与分子物理学报 15 421

    Jia D, Dong Z Z, Yu S J, Liu W X 1998 J. Atom. Mol. Phys. Sin. 15 421

    [7]

    姜振益, 李盛涛 2006 物理学报 55 6032Google Scholar

    Jiang Z Y, Li S T 2006 Acta Phys. Sin. 55 6032Google Scholar

    [8]

    Hua Y J, Liu X, Meng C G, Yang D Z 2003 J. Wuhan. Univ. Technol. 18 6

    [9]

    朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明 2008 物理学报 57 7204Google Scholar

    Zhu J X, Li Y H, Meng F L, Liu C S, Zheng W T, Wang Y M 2008 Acta Phys. Sin. 57 7204Google Scholar

    [10]

    单迪, 何鑫玉, 方长青, 邵晖 2015 材料导报A: 综述篇 29 28

    Shan D, He X Y, Fang C Q, Shao H 2015 Mater. Rev. A 29 28

    [11]

    尹大宇, 朱锦宇, 段永宏, 李矛, 韩建业, 朱庆生 2011 华南国防医学杂志 25 52

    Yin D Y, Zhu J Y, Duan Y H, Li M, Han J Y, Zhu Q S 2011 Milit. Medi. J. Sou. China 25 52

    [12]

    孔祥确, 金学军, 刘剑楠 2016 功能材料 47 1007Google Scholar

    Kong X Q, Jin X J, Liu J N 2016 Func. Mater. 47 1007Google Scholar

    [13]

    邵明增, 崔春娟, 杨洪波 2018 材料导报A: 综述篇 32 1181

    Shao M Z, Cui C J, Yang H B 2018 Mater. Rev. A 32 1181

    [14]

    杨贤金, 朱胜利, 崔振铎, 姚康德 2001 功能材料 32 154Google Scholar

    Yang X J, Zhu S L, Cui Z D, Yao K D 2001 Func. Mater. 32 154Google Scholar

    [15]

    Qiu D L, Wang A P, Yin Y S 2010 Appl. Surf. Sci. 257 1774Google Scholar

    [16]

    Li Y F, Tang S L, Gao Y M, Ma S Q, Zheng Q L, Cheng Y H 2017 Int. J. Mod. Phys. B 31 1750161Google Scholar

    [17]

    Nigussa K N, Støvneng J A 2011 Comput. Phys. Commun. 182 1979Google Scholar

    [18]

    Vishnu K G, Strachan A 2012 Phys. Rev. B 85 014114Google Scholar

    [19]

    Sandoval L, Haskins J B, Lawson J W 2018 Acta Mater. 154 182Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [22]

    Li G F, Zheng H Z, Shu X Y, Peng P 2016 Met. Mater. Int. 22 69Google Scholar

    [23]

    Pfetzing-Micklich J, Somsen C, Dlouhy A, Begau C, Hartmaier A, Wagner M F X, Eggeler G 2013 Acta Mater. 61 602Google Scholar

    [24]

    Mercier O, Melton K N, Gremaud G, Häji J 1980 J. Appl. Phys. 51 1833Google Scholar

    [25]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 80 144203Google Scholar

    [26]

    Sestak P, Cerny M, Pokluda J 2008 Strength. Mater. 40 12Google Scholar

    [27]

    Sedlak P, Frost M, Kruisova A, Hirmanova K, Heller L, Sittner P 2014 J.Mater. Eng. Perf. 23 2591Google Scholar

    [28]

    Zeng Z Y, Hu C E, Cai L C, Chen X R, Jing F Q 2010 Physica B 405 3665Google Scholar

    [29]

    Fiorentini V, Methfessel M 1996 J. Phys-Condens. Mat. 8 6525Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409Google Scholar

  • [1] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun. First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions. Acta Physica Sinica, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [4] Zhang Ying, Liu Chun-Sheng. Theoretical study of optical and electronic properties of silicether/graphether heterostructure. Acta Physica Sinica, 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [5] Zhang Xiao-Chao, Guan Mei-Hua, Zhang Qi-Rui, Zhang Chang-Ming, Li Rui, Liu Jian-Xin, Wang Ya-Wen, Fan Cai-Mei. First-principles study of single-atom Pt adsorption on BiOBr{001} surface with different atomic exposure terminations. Acta Physica Sinica, 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [6] Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo. First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials. Acta Physica Sinica, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [7] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [8] Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Acta Physica Sinica, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [9] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [10] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [11] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [12] Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Acta Physica Sinica, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [13] Yang Jian-Hui, Chen Yan-Xing, Wu Li-Hui, Wei Shi-Hao. First-principles study on stability and electronic properties of MC and Mn+1ACn phases. Acta Physica Sinica, 2014, 63(23): 237301. doi: 10.7498/aps.63.237301
    [14] Xu Lei, Dai Zhen-Hong, Wang Sen, Liu Bing, Sun Yu-Ming, Wang Wei-Tian. First principles study of fluorinated boron-carbon sheets. Acta Physica Sinica, 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [15] Feng Xiao-Qin, Jia Jian-Ming, Chen Gui-Bin. Electronic properties and modulation of structurally bent BN nanoribbon. Acta Physica Sinica, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [16] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [17] Shu Yu, Zhang Yan, Zhang Jian-Min. First-principles analysis of properties of Cu surfaces. Acta Physica Sinica, 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Huang Jin, Sun Qi-Cheng. Experimental study and analysis of energy evolution of liquid foam drainage in one dimension. Acta Physica Sinica, 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [20] Zhang Chao, Tang Xin, Wang Yong-Liang, Zhang Qing-Yu. Study on the influence of substitutional impurity on the stability of noble metal (111) surfaces by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
Metrics
  • Abstract views:  11290
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2018
  • Accepted Date:  25 December 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回