Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The study on high n Rydberg state of La II

Li Xiao-Kang Jia Feng-Dong Yu Fang-Chen Li Ming-Yang Xue Ping Xu Xiang-Yuan Zhong Zhi-Ping

Citation:

The study on high n Rydberg state of La II

Li Xiao-Kang, Jia Feng-Dong, Yu Fang-Chen, Li Ming-Yang, Xue Ping, Xu Xiang-Yuan, Zhong Zhi-Ping
PDF
HTML
Get Citation
  • We analyze ionic spectrum of lanthanum via intermediate state (Xe)$ 5d6d \; ^3F_2 $ in the energy region 89872-91783 cm–1, and the spectrum is obtained using five-laser resonance excitation in combination with a method of sequential ionization by a pulsed electric field and a constant electric field, and has been recalibrate in this work. Both of one strong and one weak autoionization Rydberg series converging to the La2+ state are determined. Meanwhile, the two autoionization Rydberg series are assigned by relativistic multichannel theory (RMCT) within the framework of multi-channel quantum defect theory (MQDT). More specifically, the strong autoionization Rydberg series is assigned to $ 5dnp\left(\dfrac{5}{2},\dfrac{1}{2}\right)_3 $ and/or $ 5dnp\left(\dfrac{5}{2},\dfrac{1}{2}\right)_2 $, and the weak autoionization Rydberg series is assigned to $ 5dnf\left(\dfrac{5}{2},\dfrac{5}{2}\right)_3 $ and/or $ 5dnf\left(\dfrac{5}{2},\dfrac{5}{2}\right)_2 $. We focus on the behavior of quantum defect with excitation energy for high $ n $ Rydberg states, which are sensitive to the existence of a external field. We find the breakdown of quantum defect regular behavior for a specific Rydberg series and autoionization Rydberg series of La+ as the effective quantum number $ n^\star>67 $. Due to that our calculations, which are obtained by relativistic multichannel theory and included configuration interactions, are in basically agreement with that for experimental low $ n $ ($ n^\star<67 $) Rydberg states as well as small stray electric fields, we suggest that plasma formed by photoionization of La atoms in the second excitation step may be responsible for the breakdown of quantum defect regular behavior.
      Corresponding author: Xue Ping, xuep@tsinghua.edu.cn ; Zhong Zhi-Ping, zpzhong@ucas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China(Grant Nos. 2017YFA0402300 , 2017YFA0304900), the National Natural Science Foundation of China (Grant No. 11604334), the Key Tesearch Program of the Chinese Academy of Sciences, China (Grant No. XDPB08-3), and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201807).
    [1]

    Xie X P, Xu C B, Sun W, Xue P, Zhong Z P, Huang W, Xu X Y 1999 J. Opt. Soc. Am. B 16 484Google Scholar

    [2]

    Kramida A, Ralchenko Y, Reader J, Team, NIST A S D url: https://physics.nist.gov/asd [2018-12-1]

    [3]

    Fano U 1970 Phys. Rev. A 2 353Google Scholar

    [4]

    Lee C M, Lu K T 1973 Phys. Rev. A 8 1241Google Scholar

    [5]

    Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485Google Scholar

    [6]

    Johnson W R, Lin C D, Cheng K T, Lee C M 1980 Phys. Scr. 21 409Google Scholar

    [7]

    李家明 1980 物理学报 29 419Google Scholar

    Li J M 1980 Acta Phys. Sin. 29 419Google Scholar

    [8]

    Seaton M J 1983 Rep. Prog. Phys. 46 167Google Scholar

    [9]

    李家明 1983 物理学报 32 84Google Scholar

    Li J M 1983 Acta Phys. Sin. 32 84Google Scholar

    [10]

    Lee C M 1974 Phys. Rev. A 10 584Google Scholar

    [11]

    邹宇, 仝晓民, 李家明 1995 物理学报 44 50Google Scholar

    Zou Y, Tong X M, Li J M 1995 Acta Phys. Sin. 44 50Google Scholar

    [12]

    Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770Google Scholar

    [13]

    颜君, 张培鸿, 仝晓民, 李家明 1996 物理学报 45 1978Google Scholar

    Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978Google Scholar

    [14]

    Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036Google Scholar

    [15]

    Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334Google Scholar

    [16]

    Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56Google Scholar

    [17]

    Sun W, Yan J, Zhong Z P, Xie X P, Xue P, Xu X Y 2001 J. Phys. B: At. Mol. Opt. Phys. 34 369Google Scholar

    [18]

    Zhang X F, Jia F D, Zhong Z P, Xue P, Xu X Y, Yan J 2007 Chin. Phys. Lett. 24 2808Google Scholar

    [19]

    Wang J Y, Zhong Z P, Jia F D, Qu Y Z, Zhong Y P 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085002Google Scholar

    [20]

    Zhong Y P, Jia F D, Zhong Z P 2009 Chin. Phys. B 18 4242Google Scholar

    [21]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [22]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [23]

    孙玮 2001 博士学位论文 (北京: 清华大学)

    Sun W 2001 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Huang W, Xu X Y, Xu C B, Xue M, Chen D Y 1995 J. Opt. Soc. Am. B 12 961Google Scholar

    [25]

    Huang W, Xu X Y, Xu C B, Xue M, Li L Q, Chen D Y 1994 Phy. Rev. A 49 R653Google Scholar

    [26]

    赵中新, 李家明 1985 物理学报 34 1469Google Scholar

    Zhao Z X, Li J M 1985 Acta Phys. Sin. 34 1469Google Scholar

    [27]

    李心梅, 阮亚平, 钟志萍 2012 物理学报 61 023104Google Scholar

    Li X M, Ruan Y P, Zhong Z P 2012 Acta Phys. Sin. 61 023104Google Scholar

    [28]

    Jia F D, Zhong Z P, Sun W, Xue P, Xu X Y 2009 Phys. Rev. A 79 032505Google Scholar

    [29]

    Lv S F, Li R, Jia F D, Li X K, Lassen J, Zhong Z P 2017 Chin. Phys. Lett. 34 073101Google Scholar

    [30]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhöfer A, Yan H 2017 Phy. Rev. A 95 052501Google Scholar

    [31]

    Gallagher T F 1994 Rydberg Atom (1st Ed.) (Cambridge: Cambridge University Press) pp 70–102

    [32]

    Ecker G, Kröll W 1963 Phys. Fluids 6 62Google Scholar

    [33]

    Stewart J C, Pyatt Jr. K D 1966 Astrophys. J. 144 1203Google Scholar

    [34]

    Qi Y Y, Wang J G, Janev R K 2008 Phys. Rev. A 78 062511Google Scholar

    [35]

    Lyon M, Rolston S L 2017 Rep. Prog. Phys. 80 017001Google Scholar

    [36]

    Park H, Ali R, Gallagher T F 2010 Phys. Rev. A 82 023421Google Scholar

  • 图 1  由中间态(Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm F}_2 $激发的一价镧离子光谱的能量标定: 以文献[1]的89690.4—91639.8 cm–1光谱(下图)为基准, 对89872.8—91783.2 cm–1能区光谱(上图)[19]重新标定, 平移了–10.3 cm–1. 横轴能量以一价镧离子基态能量为零点

    Figure 1.  The energy calibration of the excited La+ spectrum via intermediate state (Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm F}_2 $. We recalibrate the spectrum[19] in the energy region 89872.8—91783.2 cm–1 (upper figure) according to the spectrum[1] in the energy region 89690.4—91639.8 cm–1(lower figure), and the offset of the recalibration is –10.3 cm–1. The zero point of energy is taken the energy of the ground state of La+.

    图 2  考虑了对实验谱有主要贡献的本征通道之间相互作用的理论光谱(中间谱)与实验谱(上图)和本征通道谱(下图)$ 5{\rm d}\epsilon {\rm p}\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3, J^\pi=3^- $的比较. 中间的理论谱是根据(1)式, 考虑了$ J^\pi=3^- $的这些本征通道的相互作用: $ 5{\rm d}_{3/2}\epsilon {\rm f}_{5/2}$, $5d_{5/2}\epsilon f_{5/2}$, $5{\rm d}_{5/2}\epsilon {\rm p}_{1/2}$, $4{\rm f}_{5/2}\epsilon {\rm s}_{1/2}$, $4{\rm f}_{5/2}\epsilon {\rm d}_{3/2}$, $4{\rm f}_{7/2}\epsilon {\rm s}_{1/2}$, $4{\rm f}_{7/2}\epsilon {\rm d}_{3/2}$, $4{\rm f}_{7/2}\epsilon {\rm d}_{5/2} $$ 6{\rm p}_{3/2}\epsilon {\rm d}_{5/2} $

    Figure 2.  Comparison of the experimental spectrum(upper figure), the theoretical spectrum(middle figure) considering interaction among these eigenchannels that give primary contribution to the experimental spectra and the eigenchannel spetrum(lower figure) for $ 5{\rm d}\epsilon {\rm p}\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3, J^\pi=3^- $ The theoretical spectrum shown in middle figure is obtained based on the Eq. (1), and included these eigenchannels with $ J^\pi=3^- $: $ 5{\rm d}_{3/2}\epsilon {\rm f}_{5/2}$, $5{\rm d}_{5/2}\epsilon {\rm f}_{5/2}$, $5{\rm d}_{5/2}\epsilon {\rm p}_{1/2}$, $4{\rm f}_{5/2}\epsilon {\rm s}_{1/2}$, $4{\rm f}_{5/2}\epsilon {\rm d}_{3/2}$, $4{\rm f}_{7/2}\epsilon {\rm s}_{1/2}$, $4{\rm f}_{7/2}\epsilon {\rm d}_{3/2}$, $4{\rm f}_{7/2}\epsilon {\rm d}_{5/2} $ and $ 6{\rm p_{3/2}\epsilon d}_{5/2} $.

    图 3  一价镧离子的里德伯系列(下图)和自电离里德伯系列(上图)对应的模为1的量子数亏损随激发能量的变化关系. 实验值用实心圆点表示, 理论计算给出了$ J^\pi=3^- $的所有可能的束缚态能级和本征通道$ 5{\rm d}\epsilon {\rm p}\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $的谱峰能级对应的模为1的量子数亏损, 用空心圆点表示. 激发能量用有效量子数$ n^\star $表征, 利用了里德伯关系, $ E=E_\infty-\dfrac{Z^2 Ry.}{(n^\star)^2}, n^\star=n-\mu_{n, l, j} $, 这里$ E $是激发能量, $ n^\star $为有效量子数, $ \mu $为量子数亏损, $ E_\infty $ 是相应的电离阈值, $ Z $为离子实的有效正电荷数, $ Ry. $为里德伯常数

    Figure 3.  Quantum defect $ \mu $ mod 1 v.s. excited energy for Rydberg series(lower figure) and autoionization Rydberg series(upper figure) of La+. $ \bullet $: Experimental data. $ \circ $: theoretcal quantum defect mod 1 for all possible bound state energy levels with $ J^\pi=3^- $ symmetry and peak positions of eigenchannel $ 5{\rm d}\epsilon {\rm p}\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $. Excitation energy is represented by the effective quantum number $ n^\star $, according to Rydberg formula $ E=E_\infty-\dfrac{Z^2 Ry.}{(n^\star)^2}, n^\star=n-\mu $. Here, $ E $ is excitation energy, $ n^\star $ is effective quantum number, $ \mu $ is quantum defect, $ E_\infty $ is the ionization threshold, $ Z $ is the charge of the ionic core, and $ Ry. $ is Rydberg constant.

    图 4  不同电离阈值得到的一价镧离子里德伯系列(有效量子数$ n^\star>67 $时, 对应激发能量范围为90120 cm–1—90175 cm–1)量子数亏损随激发能量的变化关系. 采用文献[1]给出的一价镧离子第一电离阈值90212.8 cm–1, 得出的量子数亏损用实心圆点表示; 采用根据里德伯系列量子数亏损变化光滑性拟合的电离阈值90212.5 cm–1, 得出的量子数亏损用空心圆点表示

    Figure 4.  Quantum defect $ \mu $ v.s. excited energy for the Rydberg series ($ n^\star>67 $, in the energy region 90120 cm–1—90175 cm–1 ) converging to the different ionization thresholds. $ \bullet $: quantum defects obtained by the ionization threshold 90212.8 cm–1 from Ref. [1]. $ \circ $: quantum defects obtained by the ionization threshold 90212.5 cm–1, which is fitted based on the quantum defect regular behavior for a Rydberg series.

    表 1  一价镧离子强自电离里德伯系列能级位置实验和理论比较. 理论标识分为两列: (1)本征通道$ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $, (2)本征通道$ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_2 $. 实验能级由中间态(Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $激发的光谱得到. 实验误差为0.5 cm–1

    Table 1.  Comparison of energy positions (cm–1) between the experimental and the theoretical strong autoionization Rydberg series of La+. Theoretical assignments are divided into two columns with the labels: (1) eigenchannel $ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $, (2) eigenchannel $ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_2 $. The experimental energy levels are obtained via the intermediate state (Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $. The experimental error is 0.5 cm–1.

    $ E_{{\rm{exp.}}} $ $ n^\star $ $ E_{{\rm{theo.}}} $ $ E_{{\rm{exp.}}} $ $ n^\star $ $ E_{{\rm{theo.}}} $
    (1) (2) (1) (2)
    90680.0 19.66 90676.4 90683.3 91678.8 56.56 91679.2 91679.5
    90796.0 20.74 90777.4 90789.4 91683.4 57.53 91684.0 91684.1
    90887.1 21.74 90865.5 90883.9 91688.0 58.55 91688.4 91688.5
    90967.0 22.74 90972.6 90963.6 91692.3 59.56 91692.9 91692.7
    91035.9 23.72 91031.5 91033.5 91696.3 60.55 91697.0 91696.8
    91092.7 24.63 91095.1 91095.1 91700.1 61.53 91700.5 91700.6
    91151.4 25.70 91149.8 91149.8 91703.8 62.54 91704.3 91704.1
    91201.3 26.72 91192.8 91199.8 91707.3 63.54 91707.8 91707.8
    91244.8 27.72 91244.4 91243.2 91710.7 64.56 91711.1 91711.1
    91316.9 29.65 91318.1 91317.2 91713.9 65.56 91714.2 91714.2
    91350.9 30.72 91349.9 91349.0 91717.1 66.61 91717.4 91717.3
    91379.2 31.70 91379.2 91381.2 91720.0 67.61 91720.3 91720.2
    91404.1 32.64 91405.3 91405.4 91722.6 68.54 91723.0 91722.9
    91428.5 33.66 91428.9 91429.3 91725.2 69.52 91725.6 91725.6
    91450.4 34.65 91451.1 91451.1 91727.7 70.49 91728.2 91728.2
    91470.7 35.65 91473.2 91472.4 91730.3 71.55 91730.6 91730.5
    91489.4 36.66 91491.0 91489.9 91732.7 72.58 91732.9 91732.9
    91506.3 37.65 91507.5 91506.9 91734.7 73.47 91735.2 91735.2
    91522.0 38.64 91523.2 91522.6 91737.0 74.53 91737.3 91737.3
    91536.2 39.61 91537.5 91537.1 91739.0 75.49 91739.4 91739.3
    91550.0 40.62 91551.2 91549.7 91741.0 76.49 91741.4 91741.4
    91562.5 41.61 91564.0 91563.7 91742.8 77.42 91743.3 91743.2
    91574.3 42.61 91575.3 91576.6 91744.8 78.50 91745.1 91745.0
    91585.1 43.60 91585.9 91586.8 91746.5 79.45 91746.8 91746.9
    91595.5 44.61 91596.3 91596.5 91748.2 80.44 91748.6 91748.6
    91604.9 45.60 91605.6 91605.9 91749.7 81.35 91750.2 91750.2
    91613.8 46.59 91614.5 91614.6 91751.4 82.41 91751.8 91751.8
    91622.1 47.58 91622.8 91623.1 91752.9 83.39 91753.3 91753.3
    91629.9 48.56 91630.8 91630.9 91754.6 84.53 91754.8 91754.8
    91637.3 49.56 91638.1 91638.3 91755.8 85.37 91756.2 91756.2
    91644.2 50.54 91645.2 91645.2 91757.2 86.38 91757.6 91757.6
    91650.9 51.56 91651.7 91651.7 91758.4 87.27 91759.0 91758.9
    91657.1 52.55 91657.8 91658.0 91759.8 88.35 91760.2 91760.2
    91662.9 53.54 91663.8 91663.8 91761.3 89.56 91761.4 91761.5
    91668.4 54.53 91669.2 91669.2 91762.1 90.22 91762.6 91762.6
    91673.9 55.57 91674.3 91674.4
    DownLoad: CSV

    表 2  一价镧离子弱自电离里德伯系列能级位置实验和理论比较. 理论标识分为两列: (1)本征通道$ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_3 $, (2)本征通道$ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_2 $. 实验能级由中间态(Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $激发的光谱得到. 实验误差为0.5 cm–1

    Table 2.  Comparison of energy positions (cm–1) between the experimental and the theoretical weak autoionization Rydberg series of La+. Theoretical assignments are divided into two columns with the labels: (1) eigenchannel $ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_3 $, (2) eigenchannel $ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_2 $. The experimental energy levels are obtained via the intermediate state (Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $. The experimental error is 0.5 cm–1.

    $ E_{{\rm{exp.}}} $ $ n^\star $ $ E_{{\rm{theo.}}} $ $ E_{{\rm{exp.}}} $ $ n^\star $ $ E_{{\rm{theo.}}} $
    (1) (2) (1) (2)
    90980.9 22.93 90977.0 90981.4 91578.6 43.00 91576.0 91578.3
    91317.2 29.66 91318.2 91326.2 91589.1 43.98 91586.1 91591.1
    91359.7 31.01 91349.9 91357.1 91598.6 44.93 91596.8 91600.0
    91387.7 32.01 91393.1 91386.0 91608.4 45.98 91606.2 91609.2
    91412.1 32.97 91417.3 91411.5 91616.7 46.93 91615.2 91617.5
    91435.4 33.96 91438.8 91436.8 91625.1 47.95 91623.5 91625.9
    91456.7 34.95 91456.1 91457.6 91632.7 48.93 91631.2 91633.2
    91474.6 35.86 91475.1 91478.1 91640.0 49.94 91641.5 91640.6
    91494.6 36.95 91492.7 91495.9 91646.8 50.93 91645.6 91647.4
    91511.1 37.94 91508.9 91512.3 91653.3 51.94 91651.9 91653.9
    91526.2 38.92 91523.0 91527.7 91659.3 52.92 91658.2 91660.1
    91541.4 39.98 91538.7 91541.6 91665.0 53.91 91664.1 91665.7
    91554.8 40.99 91552.1 91554.8 91670.2 54.86 91669.4 91671.1
    91567.1 41.99 91564.4 91566.9 91675.5 55.89 91674.7 91676.1
    DownLoad: CSV
  • [1]

    Xie X P, Xu C B, Sun W, Xue P, Zhong Z P, Huang W, Xu X Y 1999 J. Opt. Soc. Am. B 16 484Google Scholar

    [2]

    Kramida A, Ralchenko Y, Reader J, Team, NIST A S D url: https://physics.nist.gov/asd [2018-12-1]

    [3]

    Fano U 1970 Phys. Rev. A 2 353Google Scholar

    [4]

    Lee C M, Lu K T 1973 Phys. Rev. A 8 1241Google Scholar

    [5]

    Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485Google Scholar

    [6]

    Johnson W R, Lin C D, Cheng K T, Lee C M 1980 Phys. Scr. 21 409Google Scholar

    [7]

    李家明 1980 物理学报 29 419Google Scholar

    Li J M 1980 Acta Phys. Sin. 29 419Google Scholar

    [8]

    Seaton M J 1983 Rep. Prog. Phys. 46 167Google Scholar

    [9]

    李家明 1983 物理学报 32 84Google Scholar

    Li J M 1983 Acta Phys. Sin. 32 84Google Scholar

    [10]

    Lee C M 1974 Phys. Rev. A 10 584Google Scholar

    [11]

    邹宇, 仝晓民, 李家明 1995 物理学报 44 50Google Scholar

    Zou Y, Tong X M, Li J M 1995 Acta Phys. Sin. 44 50Google Scholar

    [12]

    Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770Google Scholar

    [13]

    颜君, 张培鸿, 仝晓民, 李家明 1996 物理学报 45 1978Google Scholar

    Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978Google Scholar

    [14]

    Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036Google Scholar

    [15]

    Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334Google Scholar

    [16]

    Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56Google Scholar

    [17]

    Sun W, Yan J, Zhong Z P, Xie X P, Xue P, Xu X Y 2001 J. Phys. B: At. Mol. Opt. Phys. 34 369Google Scholar

    [18]

    Zhang X F, Jia F D, Zhong Z P, Xue P, Xu X Y, Yan J 2007 Chin. Phys. Lett. 24 2808Google Scholar

    [19]

    Wang J Y, Zhong Z P, Jia F D, Qu Y Z, Zhong Y P 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085002Google Scholar

    [20]

    Zhong Y P, Jia F D, Zhong Z P 2009 Chin. Phys. B 18 4242Google Scholar

    [21]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [22]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [23]

    孙玮 2001 博士学位论文 (北京: 清华大学)

    Sun W 2001 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Huang W, Xu X Y, Xu C B, Xue M, Chen D Y 1995 J. Opt. Soc. Am. B 12 961Google Scholar

    [25]

    Huang W, Xu X Y, Xu C B, Xue M, Li L Q, Chen D Y 1994 Phy. Rev. A 49 R653Google Scholar

    [26]

    赵中新, 李家明 1985 物理学报 34 1469Google Scholar

    Zhao Z X, Li J M 1985 Acta Phys. Sin. 34 1469Google Scholar

    [27]

    李心梅, 阮亚平, 钟志萍 2012 物理学报 61 023104Google Scholar

    Li X M, Ruan Y P, Zhong Z P 2012 Acta Phys. Sin. 61 023104Google Scholar

    [28]

    Jia F D, Zhong Z P, Sun W, Xue P, Xu X Y 2009 Phys. Rev. A 79 032505Google Scholar

    [29]

    Lv S F, Li R, Jia F D, Li X K, Lassen J, Zhong Z P 2017 Chin. Phys. Lett. 34 073101Google Scholar

    [30]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhöfer A, Yan H 2017 Phy. Rev. A 95 052501Google Scholar

    [31]

    Gallagher T F 1994 Rydberg Atom (1st Ed.) (Cambridge: Cambridge University Press) pp 70–102

    [32]

    Ecker G, Kröll W 1963 Phys. Fluids 6 62Google Scholar

    [33]

    Stewart J C, Pyatt Jr. K D 1966 Astrophys. J. 144 1203Google Scholar

    [34]

    Qi Y Y, Wang J G, Janev R K 2008 Phys. Rev. A 78 062511Google Scholar

    [35]

    Lyon M, Rolston S L 2017 Rep. Prog. Phys. 80 017001Google Scholar

    [36]

    Park H, Ali R, Gallagher T F 2010 Phys. Rev. A 82 023421Google Scholar

  • [1] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [2] Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [3] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [4] Liu Shuo, Bai Jian-Dong, Wang Jie-Ying, He Jun, Wang Jun-Min. Measurement of quantum defect of cesium nP3/2 (n = 70—94) Rydberg states by using ultraviolet single-photon Rydberg excitation. Acta Physica Sinica, 2019, 68(7): 073201. doi: 10.7498/aps.68.20182283
    [5] Xu Peng, He Xiao-Dong, Liu Min, Wang Jin, Zhan Ming-Sheng. Experimental progress of quantum computation based on trapped single neutral atoms. Acta Physica Sinica, 2019, 68(3): 030305. doi: 10.7498/aps.68.20182133
    [6] Zhang Dian-Cheng, Zhang Ying, Li Xiao-Kang, Jia Feng-Dong, R. Li, Zhong Zhi-Ping. Electron correlation effects in even Rydberg series converging to 4f13(2F7/2o)6s(7/2, 1/2)4o and 4f13(2F7/2o)6s(7/2, 1/2)3o of thulium atom. Acta Physica Sinica, 2018, 67(18): 183102. doi: 10.7498/aps.67.20180797
    [7] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [8] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin. Measurement of the argon-gas-induced broadening and shifting of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [9] Sun Jiang, Liu Peng, Sun Juan, Su Hong-Xin, Wang Ying. Study of the satellite line in measurement of the argon -gas-induced broadening of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [10] Li Xin-Mei, Ruan Ya-Ping, Zhong Zhi-Ping. Theoretical study of the Rydberg series energy levels of ns2S1/2,np2P1/2,3/2, nd2D3/2,5/2 and nf2F5/2,7/2 for alkali-metal Li, Na, K, Rb, Cs and Fr. Acta Physica Sinica, 2012, 61(2): 023104. doi: 10.7498/aps.61.023104
    [11] Li Hong-Yun, Lin Sheng-Lu, Liu Wei. Recurrence spectra of Rydberg NO molecules in a strong magnetic field. Acta Physica Sinica, 2010, 59(10): 6824-6831. doi: 10.7498/aps.59.6824
    [12] Fan Shi-Lin, Zhang Xin-Feng, Xue Ping, Jia Feng-Dong, Zhong Zhi-Ping, Xu Xiang-Yuan. Theoretical study of autoionization Rydberg series 3d4s(1D2)nf2 D3/2,3d4s(1D2)nf2 F5/2 and 3d4s(1D2. Acta Physica Sinica, 2010, 59(9): 6036-6043. doi: 10.7498/aps.59.6036
    [13] Zhang Gui-Yin, Jin Yi-Dong. Optical-optical double-color and double-resonance multiphoton ionization spectrum of NO2. Acta Physica Sinica, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
    [14] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [15] YAN JUN, ZHANG PEI-HONG, TONG XIAO-MIN, LI JIA-MING. THEORETICAL STUDY OF THE FINE-STRUCTURE INVERSIONS IN nf RYDBERG STATES OF ALKALI ATOMS. Acta Physica Sinica, 1996, 45(12): 1978-1985. doi: 10.7498/aps.45.1978
    [16] YANG LI. AN ANALYSIS OF ENERGY LEVEL STRUCTURES FOR SINGLE IONIZED ALUMINUM BY MQDT. Acta Physica Sinica, 1991, 40(12): 1897-1903. doi: 10.7498/aps.40.1897
    [17] LIANG LIANG, WANG YONG-CHANG, LIU XUE-WEN. ANALYSIS OF GaII SPECTRUM BY MULTICHANNEL QUANTUM DEFECT THEORY. Acta Physica Sinica, 1990, 39(6): 11-18. doi: 10.7498/aps.39.11
    [18] YANG LI, ZHAO YI-JUN, ZHANG ZHI-JIE. ANALYSING THE LEVEL STRUCTURE OF 1P10 SERIES OF IONIZED ALUMINUM(Al Ⅱ) BY MULTICHANNEL QUANTUM DEFECT THEORY. Acta Physica Sinica, 1988, 37(8): 1341-1344. doi: 10.7498/aps.37.1341
    [19] PAN XIAO-CHUAN, LIANG XIAO-LING, LI JIA-MING. QUANTUM DEFECT THEORY——THEORETICAL MULTIPLE-SCATTERING CALCULATIONS. Acta Physica Sinica, 1987, 36(4): 426-435. doi: 10.7498/aps.36.426
    [20] ZHAO JUN. THE 2D ABSORTION SPECTRUM OF Al I: A MQDT ANALYSIS. Acta Physica Sinica, 1982, 31(12): 28-36. doi: 10.7498/aps.31.28
Metrics
  • Abstract views:  8399
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2018
  • Accepted Date:  04 December 2018
  • Available Online:  01 February 2019
  • Published Online:  20 February 2019

/

返回文章
返回