Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A model of femtosecond laser ablation of metal based on dual-phase-lag model

Tan Sheng Wu Jian-Jun Huang Qiang Zhang Yu Du Xin-Ru

Citation:

A model of femtosecond laser ablation of metal based on dual-phase-lag model

Tan Sheng, Wu Jian-Jun, Huang Qiang, Zhang Yu, Du Xin-Ru
PDF
HTML
Get Citation
  • Femtosecond laser ablation possesses a variety of applications due to its better control, high power density, smaller heat-affected zone, minimal collateral material damage, lower ablation thresholds, and excellent mechanical properties. The non-Fourier effect in heat conduction becomes significant when the heating time becomes extremely small. In order to analyze the femtosecond laser ablation process, a hyperbolic heat conduction model is established based on the dual-phase-lag model. Taken into account in the model are the effect of heat source, laser heating of the target, the evaporation and phase explosion of the target material, the formation and expansion of the plasma plume, and interaction of the plasma plume with the incoming laser. Temperature-dependent optical and thermophysical properties are also considered in the model due to the fact that the properties of the target will change over a wide range in the femtosecond laser ablation process. The effects of the plasma shielding, the ratio of the two delay times, and laser fluence are discussed and the effectiveness of the model is verified by comparing the simulation results with the experimental results. The results show that the plasma shielding has a great influence on the femtosecond laser ablation process, especially when the laser fluence is high. The ratio between the two delay times (the ratio B) has a great influence on the temperature characteristic and ablation characteristic in the femtosecond laser ablation process. The augment of the ratio B will increase the degree of thermal diffusion, which will lower down the surface temperature and accelerate the ablation rate after the ablation has begun. The ablation mechanism of femtosecond laser ablation is dominated by phase explosion. The heat affected zone of femtosecond laser ablation is small, and the heat affected zone is less affected by laser fluence. The comparison between the simulation results and the experimental results in the literature shows that the model based on the dual-phase-lag model can effectively simulate the femtosecond laser ablation process.
      Corresponding author: Tan Sheng, tsh201201401007@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11772354).
    [1]

    Shirk D, Molian P A 1998 J. Laser Appl. 10 18Google Scholar

    [2]

    Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638Google Scholar

    [3]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406

    [4]

    Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301Google Scholar

    [5]

    王文亭, 胡冰, 王明伟 2013 物理学报 62 060601Google Scholar

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601Google Scholar

    [6]

    Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487

    [7]

    Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148

    [8]

    Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77

    [9]

    谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415

    Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415

    [10]

    Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006Google Scholar

    [11]

    Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57Google Scholar

    [12]

    Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11

    [13]

    Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202Google Scholar

    [14]

    Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573Google Scholar

    [15]

    Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53

    [16]

    Perez D, Lewis L J 2003 Phys. Rev. B 67 184102Google Scholar

    [17]

    Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243Google Scholar

    [18]

    Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202Google Scholar

    [19]

    Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [20]

    Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407

    [21]

    王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 210601Google Scholar

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601Google Scholar

    [22]

    Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079Google Scholar

    [23]

    Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996Google Scholar

    [24]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789Google Scholar

    [25]

    Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563Google Scholar

    [26]

    Singh N 2010 Int. J. Mod. Phys. B 24 1141Google Scholar

    [27]

    Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835Google Scholar

    [28]

    Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1

    [29]

    Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167Google Scholar

    [30]

    Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307Google Scholar

    [31]

    Carpene E 2006 Phys. Rev. B 74 024301

    [32]

    Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108Google Scholar

    [33]

    Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104Google Scholar

    [34]

    Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705Google Scholar

    [35]

    Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742Google Scholar

    [36]

    Ji P, Zhang Y 2017 Appl. Phys. A 123 671Google Scholar

    [37]

    Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406Google Scholar

    [38]

    Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201Google Scholar

    [39]

    Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648Google Scholar

    [40]

    Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834Google Scholar

    [41]

    Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433Google Scholar

    [42]

    Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145

    [43]

    Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447Google Scholar

    [44]

    Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347Google Scholar

    [45]

    Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012Google Scholar

    [46]

    Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824Google Scholar

    [47]

    Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605

    [48]

    Catteneo C 1958 Compte Rendus 247 431

    [49]

    Vernotte P 1958 Compte Rendus 246 3154

    [50]

    Vick B, Ozisik M N 1983 J. Heat Transf. 105 902Google Scholar

    [51]

    Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331

    [52]

    Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013

    [53]

    Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772Google Scholar

    [54]

    Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12Google Scholar

    [55]

    Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)Google Scholar

    [56]

    Tzou D Y 1995 J. Heat Transf. 117 8Google Scholar

    [57]

    周凤玺, 李世荣 2006 兰州大学学报 42 55Google Scholar

    Zhou F, Li S 2006 J. Lanzhou Univ. 42 55Google Scholar

    [58]

    Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686Google Scholar

    [59]

    Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55Google Scholar

    [60]

    Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706Google Scholar

    [61]

    Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231Google Scholar

    [62]

    Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673Google Scholar

    [63]

    Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1Google Scholar

    [64]

    Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428Google Scholar

    [65]

    Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822Google Scholar

    [66]

    Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592

    [67]

    Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725Google Scholar

    [68]

    Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45Google Scholar

    [69]

    Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301Google Scholar

    [70]

    Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008Google Scholar

    [71]

    Kumar D, Rai K N 2017 J. Therm. Biol. 67 49Google Scholar

    [72]

    Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307Google Scholar

    [73]

    Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101Google Scholar

    [74]

    谭新玉, 张端明, 李智华, 关丽, 李莉 2005 物理学报 54 3915Google Scholar

    Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915Google Scholar

    [75]

    Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716Google Scholar

    [76]

    Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar

    [77]

    Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar

    [78]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843Google Scholar

    [79]

    Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1

    [80]

    Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075Google Scholar

    [81]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [82]

    Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar

    [83]

    Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169

    [84]

    Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307Google Scholar

    [85]

    Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301Google Scholar

    [86]

    陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页

    Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)

    [87]

    张代贤 2014 博士学位论文 (长沙: 国防科技大学)

    Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [88]

    蒋方明, 刘登瀛 2001 上海理工大学学报 23 197Google Scholar

    Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197Google Scholar

    [89]

    Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238Google Scholar

    [90]

    Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060Google Scholar

    [91]

    Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178

  • 图 1  蒸发开始前激光与靶材相互作用示意图

    Figure 1.  Schematic of laser interaction with target before the initiation of the evaporation.

    图 2  蒸发开始后激光与靶材相互作用示意图

    Figure 2.  Schematic of laser interaction with target after the initiation of the evaporation.

    图 3  激光强度与最大激光强度的比值随时间的变化(tp = 170 fs (FWHM))

    Figure 3.  The variation of the ratio of laser intensity to maximum laser intensity with time (tp = 170 fs (FWHM)).

    图 4  计算网格示意图

    Figure 4.  Schematic of computational grids.

    图 5  激光强度和烧蚀深度的对比(Ffluence = 20.0 J/cm2)

    Figure 5.  Comparison of laser intensity and ablation depth (Ffluence = 20.0 J/cm2).

    图 6  等离子体屏蔽比例随着激光能量密度的变化

    Figure 6.  Variation of plasma shielding proportions with laser fluence.

    图 7  不同比值B (${\tau _q}$不变)时, 温度沿靶材深度的分布(Ffluence = 0.2 J/cm2)

    Figure 7.  Distribution of temperature along the target depth at different ratios B (${\tau _q}$ is constant) (Ffluence = 0.2 J/cm2).

    图 8  比值B (${\tau _q}$不变)对表层温度的影响(Ffluence = 10.0 J/cm2)

    Figure 8.  The effect of ratios B (${\tau _q}$ is constant) on temperature of surface layer (Ffluence = 10.0 J/cm2).

    图 9  比值B (${\tau _q}$不变)对表面温度的影响(Ffluence = 10.0 J/cm2)

    Figure 9.  The effect of ratios B (${\tau _q}$ is constant) on surface temperature (Ffluence = 10.0 J/cm2).

    图 10  比值B (${\tau _q}$不变)对烧蚀深度的影响(Ffluence = 10.0 J/cm2)

    Figure 10.  The effect of ratios B (${\tau _q}$ is constant) on ablation depth (Ffluence = 10.0 J/cm2).

    图 11  比值B ($\tau _{\rm{T}}$不变)对表面温度的影响(Ffluence = 10.0 J/cm2)

    Figure 11.  The effect of ratios B ($\tau _{\rm{T}}$ is constant) on surface temperature (Ffluence = 10.0 J/cm2).

    图 12  比值B($\tau _{\rm{T}}$不变)对烧蚀特性的影响(Ffluence = 10.0 J/cm2)

    Figure 12.  The effect of ratios B ($\tau _{\rm{T}}$ is constant) on ablation depth (Ffluence = 10.0 J/cm2).

    图 13  不同激光能量密度下, 表面温度随时间的变化($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps)

    Figure 13.  Surface temperature changes with time at different laser fluence ($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps).

    图 14  不同激光能量密度下, 烧蚀深度随时间的变化($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps)

    Figure 14.  Ablation depth changes with time at different laser fluence ($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps).

    图 15  不同能量密度下, 烧蚀深度、超热液体层、融化层和热影响的固体层随时间的变化($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps)

    Figure 15.  The ablation depth, the superheated liquid layer, melting layer and heat affected solid layer as a function of time at different laser fluence ($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps).

    图 16  烧蚀深度的计算结果与文献[90]的实验结果对比(tp = 170 fs (FWHM))

    Figure 16.  Comparison of simulation results of ablation depth with the experimental results from Ref. [90] (tp = 170 fs (FWHM)).

    图 17  烧蚀深度的计算结果与文献[91]的实验结果对比(tp = 70 fs (FWHM))

    Figure 17.  Comparison of simulation results of ablation depth with the experimental results from Ref. [91] (tp = 70 fs (FWHM)).

    表 1  模型中用到的Cu的参数

    Table 1.  Parameters of Cu used in the model.

    参数符号取值文献
    熔点/K${T_{\rm{m}}}$1357.77[83]
    沸点/K${T_{\rm{b}}}$2835.15[83]
    蒸发潜热/J·kg–1${L_{{\rm{hv}}}}$4.79937 × 106[83]
    第一电离能/eV$I{P_1}$7.72638[83]
    临界温度/K${T_{{\rm{cr}}}}$8500.00[81]
    蒸发系数${C_{\rm{s}}}$0.82[85]
    热流矢量延迟时间/ps${\tau _q}$0.56—5.4[66]
    温度梯度延迟时间/ps${\tau _{\rm{T}}}$6.0—63.0[66]
    DownLoad: CSV
  • [1]

    Shirk D, Molian P A 1998 J. Laser Appl. 10 18Google Scholar

    [2]

    Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638Google Scholar

    [3]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406

    [4]

    Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301Google Scholar

    [5]

    王文亭, 胡冰, 王明伟 2013 物理学报 62 060601Google Scholar

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601Google Scholar

    [6]

    Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487

    [7]

    Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148

    [8]

    Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77

    [9]

    谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415

    Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415

    [10]

    Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006Google Scholar

    [11]

    Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57Google Scholar

    [12]

    Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11

    [13]

    Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202Google Scholar

    [14]

    Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573Google Scholar

    [15]

    Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53

    [16]

    Perez D, Lewis L J 2003 Phys. Rev. B 67 184102Google Scholar

    [17]

    Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243Google Scholar

    [18]

    Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202Google Scholar

    [19]

    Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [20]

    Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407

    [21]

    王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 210601Google Scholar

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601Google Scholar

    [22]

    Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079Google Scholar

    [23]

    Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996Google Scholar

    [24]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789Google Scholar

    [25]

    Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563Google Scholar

    [26]

    Singh N 2010 Int. J. Mod. Phys. B 24 1141Google Scholar

    [27]

    Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835Google Scholar

    [28]

    Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1

    [29]

    Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167Google Scholar

    [30]

    Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307Google Scholar

    [31]

    Carpene E 2006 Phys. Rev. B 74 024301

    [32]

    Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108Google Scholar

    [33]

    Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104Google Scholar

    [34]

    Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705Google Scholar

    [35]

    Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742Google Scholar

    [36]

    Ji P, Zhang Y 2017 Appl. Phys. A 123 671Google Scholar

    [37]

    Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406Google Scholar

    [38]

    Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201Google Scholar

    [39]

    Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648Google Scholar

    [40]

    Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834Google Scholar

    [41]

    Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433Google Scholar

    [42]

    Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145

    [43]

    Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447Google Scholar

    [44]

    Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347Google Scholar

    [45]

    Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012Google Scholar

    [46]

    Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824Google Scholar

    [47]

    Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605

    [48]

    Catteneo C 1958 Compte Rendus 247 431

    [49]

    Vernotte P 1958 Compte Rendus 246 3154

    [50]

    Vick B, Ozisik M N 1983 J. Heat Transf. 105 902Google Scholar

    [51]

    Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331

    [52]

    Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013

    [53]

    Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772Google Scholar

    [54]

    Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12Google Scholar

    [55]

    Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)Google Scholar

    [56]

    Tzou D Y 1995 J. Heat Transf. 117 8Google Scholar

    [57]

    周凤玺, 李世荣 2006 兰州大学学报 42 55Google Scholar

    Zhou F, Li S 2006 J. Lanzhou Univ. 42 55Google Scholar

    [58]

    Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686Google Scholar

    [59]

    Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55Google Scholar

    [60]

    Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706Google Scholar

    [61]

    Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231Google Scholar

    [62]

    Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673Google Scholar

    [63]

    Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1Google Scholar

    [64]

    Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428Google Scholar

    [65]

    Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822Google Scholar

    [66]

    Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592

    [67]

    Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725Google Scholar

    [68]

    Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45Google Scholar

    [69]

    Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301Google Scholar

    [70]

    Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008Google Scholar

    [71]

    Kumar D, Rai K N 2017 J. Therm. Biol. 67 49Google Scholar

    [72]

    Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307Google Scholar

    [73]

    Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101Google Scholar

    [74]

    谭新玉, 张端明, 李智华, 关丽, 李莉 2005 物理学报 54 3915Google Scholar

    Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915Google Scholar

    [75]

    Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716Google Scholar

    [76]

    Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar

    [77]

    Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar

    [78]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843Google Scholar

    [79]

    Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1

    [80]

    Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075Google Scholar

    [81]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [82]

    Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar

    [83]

    Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169

    [84]

    Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307Google Scholar

    [85]

    Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301Google Scholar

    [86]

    陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页

    Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)

    [87]

    张代贤 2014 博士学位论文 (长沙: 国防科技大学)

    Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [88]

    蒋方明, 刘登瀛 2001 上海理工大学学报 23 197Google Scholar

    Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197Google Scholar

    [89]

    Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238Google Scholar

    [90]

    Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060Google Scholar

    [91]

    Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178

  • [1] Lin Cheng-Liang, He Bin, Wu Yong, Wang Jian-Guo. Analysis of dynamic response and screening effects on electron-ion energy relaxation in dense plasma. Acta Physica Sinica, 2025, 74(3): 035101. doi: 10.7498/aps.74.20241588
    [2] Yin Pei-Qi, Xu Bo-Ping, Liu Ying-Hua, Wang Yi-Shan, Zhao Wei, Tang Jie. Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam. Acta Physica Sinica, 2024, 73(9): 095202. doi: 10.7498/aps.73.20231625
    [3] Niu Zhong-Guo, Xu Xiang-Hui, Wang Jian-Feng, Jiang Jia-Li, Liang Hua. Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [4] Experimental study on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211425
    [5] Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang. Research and application of plasma recoil pressure physical model for pulsed laser ablation material. Acta Physica Sinica, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [7] Ma Xiao-Bo, Wang Fei, Chen De-Zhen. Influence of inclusion in functionally graded materials on the surface temperature distributions. Acta Physica Sinica, 2014, 63(19): 194401. doi: 10.7498/aps.63.194401
    [8] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [9] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock pressure in femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [10] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [11] Liu Ke, Yi You-Min, Li Liang-Bo. Experimental investigation of delayed double pulse laser produced plasma in air. Acta Physica Sinica, 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [12] Guo Kai-Min, Gao Xun, Xue Nian-Liang, Zhao Zhen-Ming, Li Hai-Jun, Lu Yi, Lin Jing-Quan. Spatially-resolved measurement of conductivity of plasma single filament generated by femtosecond laser. Acta Physica Sinica, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [13] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [14] Guo Wen-Gang, Hu Hao-Feng, Wang Pan, Wang Xiao-Lei, Zhai Hong-Chen. Time-resolved optical diagnosis of intense femtosecond laser ablation of silica glass. Acta Physica Sinica, 2011, 60(1): 017901. doi: 10.7498/aps.60.017901
    [15] Li Bo-Wen, Jiang Jun, Dong Chen-Zhong, Wang Jian-Guo, Ding Xiao-Bin. Influence of plasma effect on the energy levels and transition probabilities of hydrogen-like ions. Acta Physica Sinica, 2009, 58(8): 5274-5279. doi: 10.7498/aps.58.5274
    [16] Hu Hao-Feng, Wang Xiao-Lei, Li Zhi-Lei, Zhang Nan, Zhai Hong-Chen. Ultra-fast pulsed digital holographic diagnosis of ejected material in femtosecond laser ablation of aluminum. Acta Physica Sinica, 2009, 58(11): 7662-7667. doi: 10.7498/aps.58.7662
    [17] Li Yong-Qiang, Wu Jian-Hua, Yuan Jian-Min. Influence of Debye-screening on atomic energy levels and oscillator strengths. Acta Physica Sinica, 2008, 57(7): 4042-4048. doi: 10.7498/aps.57.4042
    [18] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [19] Lin Zhao-Xiang, Wu Jin-Quan, Gong Shun-Sheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses. Acta Physica Sinica, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [20] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
Metrics
  • Abstract views:  9673
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2018
  • Accepted Date:  10 January 2019
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回