-
Femtosecond laser ablation possesses a variety of applications due to its better control, high power density, smaller heat-affected zone, minimal collateral material damage, lower ablation thresholds, and excellent mechanical properties. The non-Fourier effect in heat conduction becomes significant when the heating time becomes extremely small. In order to analyze the femtosecond laser ablation process, a hyperbolic heat conduction model is established based on the dual-phase-lag model. Taken into account in the model are the effect of heat source, laser heating of the target, the evaporation and phase explosion of the target material, the formation and expansion of the plasma plume, and interaction of the plasma plume with the incoming laser. Temperature-dependent optical and thermophysical properties are also considered in the model due to the fact that the properties of the target will change over a wide range in the femtosecond laser ablation process. The effects of the plasma shielding, the ratio of the two delay times, and laser fluence are discussed and the effectiveness of the model is verified by comparing the simulation results with the experimental results. The results show that the plasma shielding has a great influence on the femtosecond laser ablation process, especially when the laser fluence is high. The ratio between the two delay times (the ratio B) has a great influence on the temperature characteristic and ablation characteristic in the femtosecond laser ablation process. The augment of the ratio B will increase the degree of thermal diffusion, which will lower down the surface temperature and accelerate the ablation rate after the ablation has begun. The ablation mechanism of femtosecond laser ablation is dominated by phase explosion. The heat affected zone of femtosecond laser ablation is small, and the heat affected zone is less affected by laser fluence. The comparison between the simulation results and the experimental results in the literature shows that the model based on the dual-phase-lag model can effectively simulate the femtosecond laser ablation process.
-
Keywords:
- femtosecond laser ablation /
- dual-phase-lag model /
- hyperbolic heat conduction equation /
- plasma shielding
[1] Shirk D, Molian P A 1998 J. Laser Appl. 10 18Google Scholar
[2] Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638Google Scholar
[3] Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406
[4] Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301Google Scholar
[5] 王文亭, 胡冰, 王明伟 2013 物理学报 62 060601Google Scholar
Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601Google Scholar
[6] Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487
[7] Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148
[8] Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77
[9] 谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415
Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415
[10] Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006Google Scholar
[11] Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57Google Scholar
[12] Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11
[13] Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202Google Scholar
[14] Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573Google Scholar
[15] Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53
[16] Perez D, Lewis L J 2003 Phys. Rev. B 67 184102Google Scholar
[17] Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243Google Scholar
[18] Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202Google Scholar
[19] Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar
[20] Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407
[21] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 210601Google Scholar
Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601Google Scholar
[22] Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079Google Scholar
[23] Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996Google Scholar
[24] Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789Google Scholar
[25] Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563Google Scholar
[26] Singh N 2010 Int. J. Mod. Phys. B 24 1141Google Scholar
[27] Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835Google Scholar
[28] Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1
[29] Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167Google Scholar
[30] Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307Google Scholar
[31] Carpene E 2006 Phys. Rev. B 74 024301
[32] Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108Google Scholar
[33] Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104Google Scholar
[34] Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705Google Scholar
[35] Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742Google Scholar
[36] Ji P, Zhang Y 2017 Appl. Phys. A 123 671Google Scholar
[37] Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406Google Scholar
[38] Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201Google Scholar
[39] Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648Google Scholar
[40] Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834Google Scholar
[41] Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433Google Scholar
[42] Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145
[43] Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447Google Scholar
[44] Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347Google Scholar
[45] Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012Google Scholar
[46] Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824Google Scholar
[47] Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605
[48] Catteneo C 1958 Compte Rendus 247 431
[49] Vernotte P 1958 Compte Rendus 246 3154
[50] Vick B, Ozisik M N 1983 J. Heat Transf. 105 902Google Scholar
[51] Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331
[52] Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013
[53] Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772Google Scholar
[54] Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12Google Scholar
[55] Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)Google Scholar
[56] Tzou D Y 1995 J. Heat Transf. 117 8Google Scholar
[57] 周凤玺, 李世荣 2006 兰州大学学报 42 55Google Scholar
Zhou F, Li S 2006 J. Lanzhou Univ. 42 55Google Scholar
[58] Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686Google Scholar
[59] Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55Google Scholar
[60] Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706Google Scholar
[61] Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231Google Scholar
[62] Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673Google Scholar
[63] Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1Google Scholar
[64] Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428Google Scholar
[65] Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822Google Scholar
[66] Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592
[67] Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725Google Scholar
[68] Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45Google Scholar
[69] Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301Google Scholar
[70] Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008Google Scholar
[71] Kumar D, Rai K N 2017 J. Therm. Biol. 67 49Google Scholar
[72] Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307Google Scholar
[73] Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101Google Scholar
[74] 谭新玉, 张端明, 李智华, 关丽, 李莉 2005 物理学报 54 3915Google Scholar
Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915Google Scholar
[75] Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716Google Scholar
[76] Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar
[77] Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar
[78] Singh R K, Narayan J 1990 Phys. Rev. B 41 8843Google Scholar
[79] Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1
[80] Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075Google Scholar
[81] Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar
[82] Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar
[83] Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169
[84] Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307Google Scholar
[85] Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301Google Scholar
[86] 陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页
Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)
[87] 张代贤 2014 博士学位论文 (长沙: 国防科技大学)
Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[88] 蒋方明, 刘登瀛 2001 上海理工大学学报 23 197Google Scholar
Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197Google Scholar
[89] Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238Google Scholar
[90] Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060Google Scholar
[91] Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178
-
表 1 模型中用到的Cu的参数
Table 1. Parameters of Cu used in the model.
-
[1] Shirk D, Molian P A 1998 J. Laser Appl. 10 18Google Scholar
[2] Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638Google Scholar
[3] Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406
[4] Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301Google Scholar
[5] 王文亭, 胡冰, 王明伟 2013 物理学报 62 060601Google Scholar
Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601Google Scholar
[6] Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487
[7] Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148
[8] Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77
[9] 谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415
Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415
[10] Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006Google Scholar
[11] Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57Google Scholar
[12] Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11
[13] Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202Google Scholar
[14] Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573Google Scholar
[15] Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53
[16] Perez D, Lewis L J 2003 Phys. Rev. B 67 184102Google Scholar
[17] Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243Google Scholar
[18] Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202Google Scholar
[19] Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar
[20] Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407
[21] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 210601Google Scholar
Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601Google Scholar
[22] Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079Google Scholar
[23] Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996Google Scholar
[24] Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789Google Scholar
[25] Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563Google Scholar
[26] Singh N 2010 Int. J. Mod. Phys. B 24 1141Google Scholar
[27] Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835Google Scholar
[28] Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1
[29] Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167Google Scholar
[30] Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307Google Scholar
[31] Carpene E 2006 Phys. Rev. B 74 024301
[32] Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108Google Scholar
[33] Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104Google Scholar
[34] Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705Google Scholar
[35] Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742Google Scholar
[36] Ji P, Zhang Y 2017 Appl. Phys. A 123 671Google Scholar
[37] Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406Google Scholar
[38] Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201Google Scholar
[39] Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648Google Scholar
[40] Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834Google Scholar
[41] Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433Google Scholar
[42] Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145
[43] Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447Google Scholar
[44] Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347Google Scholar
[45] Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012Google Scholar
[46] Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824Google Scholar
[47] Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605
[48] Catteneo C 1958 Compte Rendus 247 431
[49] Vernotte P 1958 Compte Rendus 246 3154
[50] Vick B, Ozisik M N 1983 J. Heat Transf. 105 902Google Scholar
[51] Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331
[52] Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013
[53] Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772Google Scholar
[54] Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12Google Scholar
[55] Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)Google Scholar
[56] Tzou D Y 1995 J. Heat Transf. 117 8Google Scholar
[57] 周凤玺, 李世荣 2006 兰州大学学报 42 55Google Scholar
Zhou F, Li S 2006 J. Lanzhou Univ. 42 55Google Scholar
[58] Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686Google Scholar
[59] Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55Google Scholar
[60] Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706Google Scholar
[61] Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231Google Scholar
[62] Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673Google Scholar
[63] Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1Google Scholar
[64] Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428Google Scholar
[65] Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822Google Scholar
[66] Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592
[67] Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725Google Scholar
[68] Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45Google Scholar
[69] Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301Google Scholar
[70] Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008Google Scholar
[71] Kumar D, Rai K N 2017 J. Therm. Biol. 67 49Google Scholar
[72] Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307Google Scholar
[73] Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101Google Scholar
[74] 谭新玉, 张端明, 李智华, 关丽, 李莉 2005 物理学报 54 3915Google Scholar
Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915Google Scholar
[75] Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716Google Scholar
[76] Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar
[77] Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar
[78] Singh R K, Narayan J 1990 Phys. Rev. B 41 8843Google Scholar
[79] Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1
[80] Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075Google Scholar
[81] Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar
[82] Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar
[83] Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169
[84] Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307Google Scholar
[85] Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301Google Scholar
[86] 陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页
Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)
[87] 张代贤 2014 博士学位论文 (长沙: 国防科技大学)
Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[88] 蒋方明, 刘登瀛 2001 上海理工大学学报 23 197Google Scholar
Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197Google Scholar
[89] Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238Google Scholar
[90] Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060Google Scholar
[91] Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178
Catalog
Metrics
- Abstract views: 9288
- PDF Downloads: 133
- Cited By: 0