Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Squeezed property of optical transistor based on cavity optomechanical system

Li Sen Li Hao-Zhen Xu Jing-Ping Zhu Cheng-Jie Yang Ya-Ping

Citation:

Squeezed property of optical transistor based on cavity optomechanical system

Li Sen, Li Hao-Zhen, Xu Jing-Ping, Zhu Cheng-Jie, Yang Ya-Ping
PDF
HTML
Get Citation
  • All-optical diodes and all-optical transistors are the basis of all-optical logic devices. We study the quantum statistical properties of all-optical diodes based on cavity quantum electrodynamics (QED)[1], and discuss the squeezed properties of the output light after passing through the diode when coherent light and squeezed light are incident. Here we extend our research to all-optical transistor, and take all-optical transistor based on cavity optomechanical system as the research object. By changing the intensity of classical pump light, the all-optical transistor can effectively control the output of the probe light and realize optical amplification. We discuss the squeezed properties of the output light of the all-optical transistor with squeezed light and coherent light as the probe light. Our results show that when the probe light is coherent, the output light remains coherent no matter whether it works in the amplified region, and is not squeezed. When the input probe light is amplitude squeezed light, the output light is still squeezed light in the light amplification region of all-optical transistor, but the squeezed properties are modulated by the input light squeezed properties and system parameters. When the squeezed angle of the input probe squeezed light is 0°, the minimum squeezed parameter S1 of the output squeezed light decreases with the increase of the squeezed coefficient r of the input probe light, and the minimum value approaches to the squeezed limit of –0.25. But the change of squeezed angle of the input probe squeezed light changes has a great influence on the squeezed parameter S1,2 of the output light, and the squeezed properties will disappear. Only when the squeezed angle is an integer multiple of π, will the squeezed properties of the output light be best. This result has a potential application value in quantum measurement, weak signal detection, and other fields.
      Corresponding author: Xu Jing-Ping, xx_jj_pp@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874287, 11574229, 11774262), the National Basic Research Program of China (Grant No. 2016YFA0302800), and the Shanghai Science and Technology Committee (STCSM), China (Grant No. 18JC1410900).
    [1]

    Li H Z, Xu J P, Wang D W, Xia X W, Yang Y P, Zhu S Y 2017 Phys. Rev. A 96 013832Google Scholar

    [2]

    Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, ouwenhoven L P K, Vandersypen L M K 2006 Nature 442 766Google Scholar

    [3]

    Orrit M 2009 Nature 460 42Google Scholar

    [4]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [5]

    Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Götzinger S, Sandoghdar V 2009 Nature 460 76Google Scholar

    [6]

    Li J J, Zhu K D 2011 Nanotechnology 22 055202Google Scholar

    [7]

    Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N 2001 Appl. Phys. Lett 78 2417Google Scholar

    [8]

    Hong F Y, Xiong S J 2008 Phys. Rev. A 78 013812Google Scholar

    [9]

    Hong F Y, Xiong S J 2008 Nanoscale. Res. Lett. 3 361Google Scholar

    [10]

    Dawes A M C 2009 Phys. Status. Solidi R 3 A17Google Scholar

    [11]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [12]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804Google Scholar

    [13]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901Google Scholar

    [14]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [15]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar

    [16]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [17]

    Zhao Y, Wilson D J, Ni K K, Kimble H J 2012 Opt. Express 20 3586Google Scholar

    [18]

    Biancofiore C, Karuza M, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2011 Phys. Rev. A 84 033814Google Scholar

    [19]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [20]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [21]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [22]

    Nunnenkamp A, Børkje K, Girvin S M 2011 Phys. Rev. Lett. 107 063602Google Scholar

    [23]

    Marquardt F, Girvin S M 2009 Physics 2 40Google Scholar

    [24]

    Larson J, Horsdal M 2011 Phys. Rev. A 84 021804Google Scholar

    [25]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [26]

    彭堃墀 1991 物理 20 588Google Scholar

    Peng K C 1991 Physics 20 588Google Scholar

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar

    [28]

    Brennecke F, Donner T, Ritter S, Bourde T, Köh M, Esslinger T 2007 Nature 450 268Google Scholar

    [29]

    Masse F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [30]

    张岩, 于旭东, 邸克, 李卫, 张靖 2013 物理学报 62 084204Google Scholar

    Zhang Y, Yu X D, Di K, Li W, Zhang J 2013 Acta Phys. Sin. 62 084204Google Scholar

  • 图 1  系统原理图[25]

    Figure 1.  Schematic diagram of the system [25].

    图 2  透射率$ T={|{C}_{{{\rm o}{\rm u}{\rm t}}^{+}}/{E}_{{\rm p}{\rm r}}|}^{2}$在不同的抽运光功率下, 随探测光与腔模的频率失谐量$ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$的变化, 抽运光的频率满足蓝失谐条件$ {\varDelta }_{{\rm c}}=-{\omega }_{m}$

    Figure 2.  The relationship between the transmissivity $ T={|{C}_{{{\rm o}{\rm u}{\rm t}}^{+}}/{E}_{{\rm p}{\rm r}}|}^{2}$ and the frequency detuning of the probe light and the cavity mode ($ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$) at different pump power. The frequency of the pump light satisfies the condition of blue detuning($ {\varDelta }_{{\rm c}}=-{\omega }_{m}$).

    图 3  在输入的探测光为压缩光的情况下, 输出光的线性部分的压缩分量$ {S}_{1}$随有效探测-腔失谐量$ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$的变化, 探测压缩光的压缩角θ为(a) 0, (b) π/4, (c) π/2 (d) 3π/4

    Figure 3.  When the input probe light is squeeze light, the squeeze component $ {S}_{1}$ of the linear part of the output light varies with the effective detection-cavity detuning value ($ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$). The squeeze angle of the probe light is (a) 0, (b) π/4, (c) π/2 (d) 3π/4

    图 4  输出光的线性部分的压缩量$ {S}_{1}$随入射探测光的压缩幅r的变化, 入射探测光的压缩角为θ = 0, 频率与腔模共振$ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}=0$

    Figure 4.  The variation of the squeeze parameter S1 of the linear part of the output light with the squeeze amplitude r of the incident probe light, the squeeze angle of the incident probe light is θ = 0, and the frequency is resonant with the cavity mode $ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}=0$.

    图 5  在不同入射压缩光压缩幅的情况下, 输出光中的非线性部分的压缩量$ {S}_{1}$随入射探测压缩光频率的变化. $ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$为探测光与腔模的频率失谐

    Figure 5.  The squeeze parameter S1 of the non-linear part of the output light varies with the frequency of the incident probe squeeze light in the case of different squeeze amplitudes of the incident squeeze light, $ \varDelta{'} _{\rm{prc}}={{\omega }_{\rm{pr}}}-\omega_{\rm{c}}{'}$ is the frequency detuning between the probe light and the cavity mode.

  • [1]

    Li H Z, Xu J P, Wang D W, Xia X W, Yang Y P, Zhu S Y 2017 Phys. Rev. A 96 013832Google Scholar

    [2]

    Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, ouwenhoven L P K, Vandersypen L M K 2006 Nature 442 766Google Scholar

    [3]

    Orrit M 2009 Nature 460 42Google Scholar

    [4]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [5]

    Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Götzinger S, Sandoghdar V 2009 Nature 460 76Google Scholar

    [6]

    Li J J, Zhu K D 2011 Nanotechnology 22 055202Google Scholar

    [7]

    Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N 2001 Appl. Phys. Lett 78 2417Google Scholar

    [8]

    Hong F Y, Xiong S J 2008 Phys. Rev. A 78 013812Google Scholar

    [9]

    Hong F Y, Xiong S J 2008 Nanoscale. Res. Lett. 3 361Google Scholar

    [10]

    Dawes A M C 2009 Phys. Status. Solidi R 3 A17Google Scholar

    [11]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [12]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804Google Scholar

    [13]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901Google Scholar

    [14]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [15]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar

    [16]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [17]

    Zhao Y, Wilson D J, Ni K K, Kimble H J 2012 Opt. Express 20 3586Google Scholar

    [18]

    Biancofiore C, Karuza M, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2011 Phys. Rev. A 84 033814Google Scholar

    [19]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [20]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [21]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [22]

    Nunnenkamp A, Børkje K, Girvin S M 2011 Phys. Rev. Lett. 107 063602Google Scholar

    [23]

    Marquardt F, Girvin S M 2009 Physics 2 40Google Scholar

    [24]

    Larson J, Horsdal M 2011 Phys. Rev. A 84 021804Google Scholar

    [25]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [26]

    彭堃墀 1991 物理 20 588Google Scholar

    Peng K C 1991 Physics 20 588Google Scholar

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar

    [28]

    Brennecke F, Donner T, Ritter S, Bourde T, Köh M, Esslinger T 2007 Nature 450 268Google Scholar

    [29]

    Masse F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [30]

    张岩, 于旭东, 邸克, 李卫, 张靖 2013 物理学报 62 084204Google Scholar

    Zhang Y, Yu X D, Di K, Li W, Zhang J 2013 Acta Phys. Sin. 62 084204Google Scholar

  • [1] Hua Zhi-Hao, Guo Qin, Fan Bi-Xuan, Xie Min. Route to chaos in whispering gallery mode coupled opto-mechanical systems. Acta Physica Sinica, 2023, 72(14): 144203. doi: 10.7498/aps.72.20222407
    [2] Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Wang Ya-Jun, Zheng Yao-Hui. Design of optical parametric cavity for broadband squeezed light field. Acta Physica Sinica, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [3] Zhou Ying, Xie Shuang-Yuan, Xu Jing-Ping. Bipartite and tripartite entanglement caused by squeezed drive in magnetic-cavity quantum electrodynamics system. Acta Physica Sinica, 2020, 69(22): 220301. doi: 10.7498/aps.69.20200838
    [4] Wen Xin, Han Ya-Shuai, Liu Jin-Yu, Bai Le-Le, He Jun, Wang Jun-Min. Generation of squeezed states at low analysis frequencies. Acta Physica Sinica, 2018, 67(2): 024207. doi: 10.7498/aps.67.20171767
    [5] Zhang Xiu-Long, Bao Qian-Qian, Yang Ming-Zhu, Tian Xue-Song. Entanglement characteristics of output optical fields in double-cavity optomechanics. Acta Physica Sinica, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [6] Liu Zeng-Jun, Zhai Ze-Hui, Sun Heng-Xin, Gao Jiang-Rui. Generation of low-frequency squeezed states. Acta Physica Sinica, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [7] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [8] Chen Xue, Liu Xiao-Wei, Zhang Ke-Ye, Yuan Chun-Hua, Zhang Wei-Ping. Quantum measurement with cavity optomechanical systems. Acta Physica Sinica, 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [9] Sun Heng-Xin, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Quantum precision measurement based on squeezed light. Acta Physica Sinica, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [10] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [11] Han Ming, Gu Kai-Hui, Liu Yi-Mou, Zhang Yan, Wang Xiao-Chang, Tian Xue-Dong, Fu Chang-Bao, Cui Cui-Li. Multistable phenomenon of the Y-type four-level atom-assisted optomechanical system. Acta Physica Sinica, 2014, 63(9): 094206. doi: 10.7498/aps.63.094206
    [12] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Photon squeezing of the Rabi model. Acta Physica Sinica, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [13] Song Zhang-Dai, Zhang Lin. Self-sustained oscillation in controllable quadratic coupling opto-mechanical systems. Acta Physica Sinica, 2013, 62(20): 204204. doi: 10.7498/aps.62.204204
    [14] Liu Hong-Yu, Chen Li, Liu Ling, Ming Ying, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Generation of femtosecond pulsed quadrature phase squeezed light. Acta Physica Sinica, 2013, 62(16): 164206. doi: 10.7498/aps.62.164206
    [15] Li Ming, Tang Tao, Chen Ding-Han. Squeezing properties of two-mode squeezed field interacting with V-type three-level atoms. Acta Physica Sinica, 2011, 60(7): 073203. doi: 10.7498/aps.60.073203
    [16] XIE RUI-HUA. STUDY OF DYNAMICAL SYMMETRY BETWEEN THE FIELD AND ATOMIC DIPOLE SQUEEZING IN A TWO-LEVEL SYSTEM. Acta Physica Sinica, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [17] LI GAO-XIANG, PENG JIN-SHENG. . Acta Physica Sinica, 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [18] PENG KUN-CHI, HUANG MAO-QUAN, LIU JING, LIAN YI-MIN, ZHANG TIAN-CAI, YU CHEN, XIE CHANG-DE, GUO GUANG-CAN. EXPERIMENTAL INVESTIGATION ABOUT TWO-MODE SQUEEZED STATE GENERATION OF LIGHT FIELD. Acta Physica Sinica, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [19] LIU ZHENG-DONG, CAO CHANG-QI, D. L. LIN. AMPLITUDE SQUEEZING OF LIGHT FIELD IN CAVITY. Acta Physica Sinica, 1991, 40(11): 1792-1798. doi: 10.7498/aps.40.1792
    [20] ZHANG WEI-PING, TAN WEI-HAN. GENERATION OF SQUEEZING LIGHT IN A LASER CAVITY. Acta Physica Sinica, 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
Metrics
  • Abstract views:  7035
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2019
  • Accepted Date:  17 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回