Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and half-metallic ferromagnetism of quaternary Heusler compounds CoMnZnZ

Xu Jia-Ling Jia Li-Yun Jin Xiao-Qing Hao Xing-Nan Ma Li Hou Deng-Lu

Citation:

Structure and half-metallic ferromagnetism of quaternary Heusler compounds CoMnZnZ

Xu Jia-Ling, Jia Li-Yun, Jin Xiao-Qing, Hao Xing-Nan, Ma Li, Hou Deng-Lu
PDF
HTML
Get Citation
  • Using the first principle full-potential linearized augmented wave method we study the electronic structure and elastic and magnetic properties of CoMnZnZ (Z = Si, Ge, Sn, Pb) LiMgPdSn-type Heusler alloys. These compounds have the composition CoMnZnZ with 1︰1︰1︰1 stoichiometry, where Z denotes the main group element Si, or Ge, or Sn, or Pb. The exchange-correlations are treated within the generalized gradient approximation of Perdewe-Burke-Ernzerhof. For each of all studied Heusler alloys, the ferromagnetic state is considered to be more stable than the paramagnetic state, judged by the energy. The total energy of the magnetic calculation is lower than that of the nonmagnetic state for each of all three serise compounds at the equilibrium lattice constant, indicating that the magnetic state is more stable than the nonmagnetic state. We determine the elastic constants C11, C12 and C44, which have not been established previously in experiment nor in theory. The elastic constant indicates the weakened resistance to sheardeformation compared with the resistance to unidirectional compression. We derive other mechanical parameters, i.e., the shear modulus G, Young’s modulus E, Poisson’s ratio ν, and shear anisotropic factor A, which are the important elastic moduli for applications. These compounds each have a lower anisotropy and possess a low probability to develop micro-crack or structural defect in its growing process. The sound velocity and Debye temperature for each of the CoMnZnZ (Z = Si, Ge, Sn, Pb) compounds in their stable structure are calculated. The CoMnZnPb exhibits the lowest Debye temperature, and the highest value is observed for CoMnZnGe. The electronic structure calculations show that CoMnZnZ (Z = Si, Ge, Sn) each exhibit a gap in the band of minority states, and they are clearly half-metallic ferromagnets, except for the CoMnZnPb. The CoMnZnZ (Z = Si, Ge, Sn) compounds and their magnetic moments are in reasonable agreement with the Slater-Pauling rule, and they comply with a Slater-Pauling rule of Mt = Zt – 28, which indicates the half metallicity and high spin polarization for these compounds. The CoMnZnSi compound has the largest half-metallic gap value and the gap is about 0.66 eV. The magnetic properties are primarily determined by the Mn atoms, which contribute the highest magnetic moments. The localmoment of the Z element atom is negligibly small. The hybridization of the d orbitals between Co and Mn can explain the origin of the Slater-Pauling rule in half-metallic quaternary Heusler alloys. The half-metallic gap comes mainly from the interaction between the Co and Mn atoms.
      Corresponding author: Jia Li-Yun, jliyun@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504247), the Hebei Natural Science Foundation, China (Grant Nos. A2018205144, E2016205268), the Department of Science and Technology of Hebei Province Scientific and Technological Research Project, China (Grant Nos. 13211032, 15211036), the Financial Support from Science and Technology Plan Projects of Zhangjiakou City, China (Grant No. 1611070A), and the Ph. D. Programs Foundation of Hebei Institute of Architecture Civil Engineering, China.
    [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 174429Google Scholar

    [3]

    Skaftouros S, Ozdogan K, Sasioglu E, Galanakis I 2013 Phys. Rev. B 87 024420Google Scholar

    [4]

    Luo H, Meng F, Liu H, Li J, Liu E, Wu G, Zhu X, Jiang C 2012 J. Magn. Magn. Mater. 324 2127Google Scholar

    [5]

    Luo H, Liu G, Meng F, Wang L, Liu E, Wu G, Zhu X, Jiang C 2011 Computat. Mater. Sci. 50 3119Google Scholar

    [6]

    Gao Q, Li L, Lei G, Deng J B, Hun X R 2015 J. Magn. Magn. Mater. 379 288Google Scholar

    [7]

    Bainsla L, Mallick A I, Coelho A A, Nigam A K, Varaprasad B, Takahashi Y K, Alam A, Suresh K G, Hono K 2015 J. Magn. Magn. Mater. 394 82Google Scholar

    [8]

    Berri S, Maouche D, Ibrir M, Zerarga F 2014 J. Magn. Magn. Mater. 354 65Google Scholar

    [9]

    Ozdogan K, Sasioglu E, Galanakis I 2013 J. Appl. Phys. 113 193903 5

    [10]

    Halder M, Mukadam M D, Suresh K G, Yusuf S M 2015 J. Magn. Magn. Mater. 377 220Google Scholar

    [11]

    Venkateswara E Y, Gupta S, Varma M R, Singh P, Suresh K G, Alam A 2015 Phys. Rev. B 92 224413

    [12]

    Bainsla L, Yadav A K, Venkateswara Y, Jha S N, Bhattacharyya D, Suresh K G 2015 J. Alloys Compounds 651 509Google Scholar

    [13]

    Al-zyadi J M K, Gao G Y, Yao K L 2015 J. Magn. Magn. Mater. 378 1Google Scholar

    [14]

    姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军 2018 物理学报 67 217501Google Scholar

    Yao Z Y, Sun L, Pan M M, Sun S J, Liu H J 2018 Acta Phys. Sin. 67 217501Google Scholar

    [15]

    黄海深, 孙剑, 吴波, 杨秀德, 李平 2018 材料导报 32 2124Google Scholar

    Huang H S, Sun J, Wu B, Yang X D, Li P 2018 Mater. Reports 32 2124Google Scholar

    [16]

    Alijani V, Ouardi S, Fecher G H, Winterlik J, Naghavi S S, Kozina X, Stryganyuk G, Felser C, Ikenaga E, Yamashita Y, Ueda S, Kobayashi K 2011 Phys. Rev. B 84 224416Google Scholar

    [17]

    Klaer P, Balke B, Alijani V, Winterlik J, Fecher G H, Felser C, Elmers H J 2011 Phys. Rev. B 84 144413Google Scholar

    [18]

    Vajiheh A, Juergen W, Gerhard H F, Naghavi S S, Stanislav C, Thomas G, Claudia F 2012 J. Phys.: Condens. Matter 24 046001Google Scholar

    [19]

    Benkabou M, Rached H, Abdellaoui A, Rached D, Khenata R, Elahmar M H, Abidri B, Benkhettou N, Bin-Omran S 2015 J. Alloys Compd. 647 276Google Scholar

    [20]

    Jia L Y, Xu J L, Zhao R B, Pan H, Shen J L, Yuan L Y, Li G K, Ma L, Zhen C M, Hou D L 2018 J. Supercond. Nov. Magn. 31 1067Google Scholar

    [21]

    辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志 2016 物理学报 65 147102Google Scholar

    Xin Y P, Ma Y X, Hao H Y, Meng F B, Liu H Y, Luo H Z 2016 Acta Phys. Sin. 65 147102Google Scholar

    [22]

    Murnaghan F 1944 Proc. Nat. Acad. Sci. USA 50 697

    [23]

    Rached H, Rached D, Khenata R, Reshak A H, Rabah M 2009 Phys. Status Solidi (b) 246 1580Google Scholar

    [24]

    Rached H, Rached D, Rabah M, Khenata R, Reshak A H 2010 Physica B: Condens. Matter 405 3515Google Scholar

    [25]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [26]

    Kanchana V, Vaitheeswaran G, Ma Y, Xie Y, Svane A, Eriksson O 2009 Phys. Rev. B 80 125108Google Scholar

    [27]

    Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823Google Scholar

    [28]

    Haines J, Leger J, Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1Google Scholar

    [29]

    Biskri Z E, Rached H, Bouchear M, Rached D 2014 J. Mech. Behav. Biomed. Mater. 32 345Google Scholar

    [30]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

  • 图 1  LiMgPdSb型Heusler合金的结构示意图

    Figure 1.  Structure of LiMgPdSn-type Heusler alloys.

    图 2  四个化合物的态密度图, 其中最上方的是TDOS, 下方分别为各原子的PDOS (a) CoMnZnSi; (b) CoMnZnGe; (c) CoMnZnSn; (d) CoMnZnPb

    Figure 2.  Totals and Partials density of states (TDOS, PDOS) in their stable structure: (a) CoMnZnSi; (b) CoMnZnGe; (c) CoMnZnSn; (d) CoMnZnPb.

    图 3  自旋向下轨道填充状态示意图

    Figure 3.  Sketch of the spin-down orbital’s occupied states.

    表 1  CoMnZnSi, CoMnZnGe, CoMnZnSn, CoMnZnPb四种化合物对应的平衡晶格常数a0、体积弹性模量B、压力导数B'和平衡能量E0

    Table 1.  Calculated equilibrium lattice parameters a0, bulk modulus B, its pressure derivative B' and equilibrium energy E0 for CoMnZnZ (Z = Si, Ge, Sn, Pb) compounds.

    Materiala0B/GPaB'E0/Ryd
    CoMnZnSi5.81163.574.56-9276.59
    CoMnZnGe5.93154.833.78-12894.68
    CoMnZnSn6.18122.295.20-21054.64
    CoMnZnPb6.3567.8010.15-50552.93
    DownLoad: CSV

    表 2  计算得到的各化合物的单晶弹性常数Cij、多晶剪切模量G、杨氏模量E、泊松比ν和剪切各向异性常数A

    Table 2.  Calculated single crystal elastic constants Cij and polycrystalline elastic modulus (shear modulus G, Young’s modulus E, Poisson’s ratio ν) shear anisotropic factor A for compounds.

    MaterialC11C12C44GEνA
    CoMnZnSi106.37175.8673.270.762.270.50–2.11
    CoMnZnGe94.93150.4560.360.972.900.50–2.17
    CoMnZnSn94.17130.4260.594.8714.410.48–3.34
    CoMnZnPb58.9897.6130.17–1.69–5.120.51–1.56
    DownLoad: CSV

    表 3  计算得到的温度压力均为0状态下的纵向(vl)、横向(vt)、平均声速 (vm)和德拜温度(θD)

    Table 3.  Calculated longitudinal (vl), transverse (vt), and average (vm) sound velocity and Debye temperature (θD) for compounds.

    Materialvt/ m·s–1vl/ m·s–1vm/ m·s–1θD/K
    CoMnZnSi3732.63178.92341208.63
    CoMnZnGe13661001.96397.9284.78
    CoMnZnSn30308999.92901.3172.36
    CoMnZnPb11474121.87588.881.813
    DownLoad: CSV

    表 4  每分子式总自旋磁矩Mt、间隙区磁矩Mi和各原子磁矩(MX, M'X, MY, MZ)、自旋极化率

    Table 4.  Total, interstitial and local magnetic moments, calculated spin-polarization.

    MaterialMtBMiBMXBM'XBMYBMZBSpin polarization ratio/%
    CoMnZnSi4.000.08720.913.010.01–0.02100
    CoMnZnGe4.000.00050.813.200.02–0.03100
    CoMnZnSn4.00–0.03210.743.34–0.01–0.04100
    CoMnZnPb4.34–0.01810.873.49–0.02–0.0147
    DownLoad: CSV
  • [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 174429Google Scholar

    [3]

    Skaftouros S, Ozdogan K, Sasioglu E, Galanakis I 2013 Phys. Rev. B 87 024420Google Scholar

    [4]

    Luo H, Meng F, Liu H, Li J, Liu E, Wu G, Zhu X, Jiang C 2012 J. Magn. Magn. Mater. 324 2127Google Scholar

    [5]

    Luo H, Liu G, Meng F, Wang L, Liu E, Wu G, Zhu X, Jiang C 2011 Computat. Mater. Sci. 50 3119Google Scholar

    [6]

    Gao Q, Li L, Lei G, Deng J B, Hun X R 2015 J. Magn. Magn. Mater. 379 288Google Scholar

    [7]

    Bainsla L, Mallick A I, Coelho A A, Nigam A K, Varaprasad B, Takahashi Y K, Alam A, Suresh K G, Hono K 2015 J. Magn. Magn. Mater. 394 82Google Scholar

    [8]

    Berri S, Maouche D, Ibrir M, Zerarga F 2014 J. Magn. Magn. Mater. 354 65Google Scholar

    [9]

    Ozdogan K, Sasioglu E, Galanakis I 2013 J. Appl. Phys. 113 193903 5

    [10]

    Halder M, Mukadam M D, Suresh K G, Yusuf S M 2015 J. Magn. Magn. Mater. 377 220Google Scholar

    [11]

    Venkateswara E Y, Gupta S, Varma M R, Singh P, Suresh K G, Alam A 2015 Phys. Rev. B 92 224413

    [12]

    Bainsla L, Yadav A K, Venkateswara Y, Jha S N, Bhattacharyya D, Suresh K G 2015 J. Alloys Compounds 651 509Google Scholar

    [13]

    Al-zyadi J M K, Gao G Y, Yao K L 2015 J. Magn. Magn. Mater. 378 1Google Scholar

    [14]

    姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军 2018 物理学报 67 217501Google Scholar

    Yao Z Y, Sun L, Pan M M, Sun S J, Liu H J 2018 Acta Phys. Sin. 67 217501Google Scholar

    [15]

    黄海深, 孙剑, 吴波, 杨秀德, 李平 2018 材料导报 32 2124Google Scholar

    Huang H S, Sun J, Wu B, Yang X D, Li P 2018 Mater. Reports 32 2124Google Scholar

    [16]

    Alijani V, Ouardi S, Fecher G H, Winterlik J, Naghavi S S, Kozina X, Stryganyuk G, Felser C, Ikenaga E, Yamashita Y, Ueda S, Kobayashi K 2011 Phys. Rev. B 84 224416Google Scholar

    [17]

    Klaer P, Balke B, Alijani V, Winterlik J, Fecher G H, Felser C, Elmers H J 2011 Phys. Rev. B 84 144413Google Scholar

    [18]

    Vajiheh A, Juergen W, Gerhard H F, Naghavi S S, Stanislav C, Thomas G, Claudia F 2012 J. Phys.: Condens. Matter 24 046001Google Scholar

    [19]

    Benkabou M, Rached H, Abdellaoui A, Rached D, Khenata R, Elahmar M H, Abidri B, Benkhettou N, Bin-Omran S 2015 J. Alloys Compd. 647 276Google Scholar

    [20]

    Jia L Y, Xu J L, Zhao R B, Pan H, Shen J L, Yuan L Y, Li G K, Ma L, Zhen C M, Hou D L 2018 J. Supercond. Nov. Magn. 31 1067Google Scholar

    [21]

    辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志 2016 物理学报 65 147102Google Scholar

    Xin Y P, Ma Y X, Hao H Y, Meng F B, Liu H Y, Luo H Z 2016 Acta Phys. Sin. 65 147102Google Scholar

    [22]

    Murnaghan F 1944 Proc. Nat. Acad. Sci. USA 50 697

    [23]

    Rached H, Rached D, Khenata R, Reshak A H, Rabah M 2009 Phys. Status Solidi (b) 246 1580Google Scholar

    [24]

    Rached H, Rached D, Rabah M, Khenata R, Reshak A H 2010 Physica B: Condens. Matter 405 3515Google Scholar

    [25]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [26]

    Kanchana V, Vaitheeswaran G, Ma Y, Xie Y, Svane A, Eriksson O 2009 Phys. Rev. B 80 125108Google Scholar

    [27]

    Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823Google Scholar

    [28]

    Haines J, Leger J, Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1Google Scholar

    [29]

    Biskri Z E, Rached H, Bouchear M, Rached D 2014 J. Mech. Behav. Biomed. Mater. 32 345Google Scholar

    [30]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

  • [1] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [2] Yang Yan-Min, Li Jia, Ma Hong-Ran, Yang Guang, Mao Xiu-Juan, Li Cong-Cong. First-principles study of structure, electronic structure and thermoelectric properties for Co2-based Heusler alloys Co2FeAl1–xSix (x = 0.25, x = 0.5, x = 0.75). Acta Physica Sinica, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [3] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan, Liu Han-Jun. First-principles study on half-metallic ferromagnetism of half-Heusler alloys VLiBi and CrLiBi. Acta Physica Sinica, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [4] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Physica Sinica, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [5] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [6] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [7] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [8] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [9] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Liu Gao-Bin, Wang Xin-Qiang. First principles study on half-metallic ferromagnetismof ternary compounds ZnVSe. Acta Physica Sinica, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [10] Liu Feng-Li, Jiang Gang, Bai Li-Na, Kong Fan-Jie. First-principles study on the electronic structures of diadochic compounds Bi2Te3- x Sex(x ≤3). Acta Physica Sinica, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [11] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [12] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Wang Xin-Qiang, Lu Li-Ya, Liu Gao-Bin, Duan Zhuang-Fen. First-principles study on electronic structure and half-metallicferromagnetism of ternary compound ZnCrS. Acta Physica Sinica, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [13] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] Luo Li-Jin, Zhong Chong-Gui, Jiang Xue-Fan, Fang Jing-Huai, Jiang Qing. A first-principles study of electronic structure, magnetism, response to pressure and tetragonal distortions of Ni2MnSi Heusler alloy. Acta Physica Sinica, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [15] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [16] Chen Yu-Hui, Wang Yang, Zuo Fang-Yuan, Lai Tian-Shu, Wu Yi-Qun. The electron dynamics of semimetal Sb films. Acta Physica Sinica, 2009, 58(5): 3548-3552. doi: 10.7498/aps.58.3548
    [17] Xu Hong-Bin, Wang Yuan-Xu. First-principles study of low-compressibility of transition-metal Tc and its nitrides TcN,TcN2,TcN3 and TcN4. Acta Physica Sinica, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  8269
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  17 February 2019
  • Accepted Date:  16 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回