-
In order to solve the technical problem of the traditional electric field sensor limited by its measurement range, a parity-time (PT) symmetric microcavity structure doped by electro-optical medium is designed, and a new electric field sensing mechanism is proposed. The transfer matrix method is used to calculate the transmission spectrum of the structure. A unique amplified defect mode is found. The peak value and wavelength position of the defect mode vary with the external electric field. The same electric field can be measured by using two mechanisms. One is to detect the change of the defect mode peak value, and the other is to measure the change of the defect mode wavelength position. The measurement range is limited only by the breakdown field value of the electro-optical medium, which can range from 0 to 0.06 V/nm, covering almost any possible electric field environment. For the peak-value sensing mechanism, the sensitivity range is 38.042—47.558 (nm/V); for the wavelength position sensing mechanism, the sensitivity range is 18.357—18.642 (nm2/V), and the average resolution in the measurement range is 0.00925 V/nm.
-
Keywords:
- electric field sensor /
- parity-time symmetry structure /
- defect mode
[1] Fort A, Mugnaini M, Vignoli V, et al. 2011 IEEE Trans. Instrum. Meas. 60 2778Google Scholar
[2] Bateman M G, Stewart M F, Podgorny S J, et al. 2007 J. Atmos. Oceanic. Technol. 24 1245Google Scholar
[3] 郑凤杰, 夏善红, 陈贤祥 2008 传感技术学报 21 946Google Scholar
Zheng F J, Xia S H, Chen X X 2008 Chinese J. Sens. Actuators 21 946Google Scholar
[4] Kainz A, Steiner H, Schalko J, Jachimowicz A, Kohl F, Stifter M, Beigelbeck R, Keplinger F, Hortschitz W 2018 Nat. Electron. 1 68Google Scholar
[5] Xiao K, Jin X, Jin X, et al. 2017 IEEE Antennas Wirel. Propag. 16 2203Google Scholar
[6] Lu T B, Feng H, Zhao Z B, Cui X 2007 IEEE Trans. Magn. 43 1221Google Scholar
[7] Bobowski J S, Ferdous M S, Johnson T 2015 IEEE Trans. Instrum. Meas. 64 923Google Scholar
[8] Shoory A, Rachidi F, Rubinstein M, et al. 2011 IEEE Trans. Electromagn. Compat. 53 792Google Scholar
[9] Miki M 2002 J. Geophys. Res. 107 4277Google Scholar
[10] Giles J C, Prather W D 2013 IEEE Trans. Electromagn. Compat. 55 475Google Scholar
[11] 付尚琛, 石立华, 周颖慧, 郭一帆 2018 复合材料学报 35 2730
Fu S S, Shi L H, Zhou X H, Guo Y F 2018 Acta Mater. Compos. Sin. 35 2730
[12] 陈未远, 曾嵘, 梁曦东, 何金良 2006 清华大学学报 46 1641Google Scholar
Chen W Y, Zeng R, Liang Y D, He J L 2006 J. Tsinghua Univ. 46 1641Google Scholar
[13] Makris K G, El-Ganainy R, Christodoulides D N, et al. 2008 Phys. Rev. Lett. 100 103904Google Scholar
[14] Lin Z, Ramezani H, Eichelkraut T, et al. 2011 Phys. Rev. Lett. 106 213901Google Scholar
[15] Tsoy E N 2017 Phys. Lett. A 381 462Google Scholar
[16] Zi J W, Xu Y L, Kim J, O’Brien K, Wang Y, Feng L, Zhang X 2017 Nat. Photonics 10 796
[17] Govyadinov A A and Podolskiya V A, Noginov M A 2007 Appl. Phys. Lett. 91 191103Google Scholar
[18] Yariv A, Yeh P 2007 Photonics: Optical Electronics in Modern Communications (New York: Oxford University Press)
[19] Klimov V I, Mikhailovsky A A, Xu S, et al. 2000 Science 290 314Google Scholar
[20] 韦伟, 于建, 纪磊, 等 2005 人工晶体学报 34 628Google Scholar
Wei W, Yu J, Ji L 2005 J. Synth. Cryst. 34 628Google Scholar
[21] 奚庆新, 刘德安, 刘立人 2005 激光与光电子学进展 42 39
Xu Q X, Liu D A, Liu L R 2005 Laser & Optoelectron. Prog. 42 39
[22] 陈建华, 屈绍波, 魏晓勇, 徐卓, 朱林户 2008 无机材料学报 23 851Google Scholar
Chen J H, Qu S B, Wei X Y, Xu Z, Zhu L H 2008 J. Inorg. Mater. 23 851Google Scholar
[23] Luennemann M, Hartwig U, Panotopoulos G, et al. 2003 Appl. Phys. B 76 403Google Scholar
-
-
[1] Fort A, Mugnaini M, Vignoli V, et al. 2011 IEEE Trans. Instrum. Meas. 60 2778Google Scholar
[2] Bateman M G, Stewart M F, Podgorny S J, et al. 2007 J. Atmos. Oceanic. Technol. 24 1245Google Scholar
[3] 郑凤杰, 夏善红, 陈贤祥 2008 传感技术学报 21 946Google Scholar
Zheng F J, Xia S H, Chen X X 2008 Chinese J. Sens. Actuators 21 946Google Scholar
[4] Kainz A, Steiner H, Schalko J, Jachimowicz A, Kohl F, Stifter M, Beigelbeck R, Keplinger F, Hortschitz W 2018 Nat. Electron. 1 68Google Scholar
[5] Xiao K, Jin X, Jin X, et al. 2017 IEEE Antennas Wirel. Propag. 16 2203Google Scholar
[6] Lu T B, Feng H, Zhao Z B, Cui X 2007 IEEE Trans. Magn. 43 1221Google Scholar
[7] Bobowski J S, Ferdous M S, Johnson T 2015 IEEE Trans. Instrum. Meas. 64 923Google Scholar
[8] Shoory A, Rachidi F, Rubinstein M, et al. 2011 IEEE Trans. Electromagn. Compat. 53 792Google Scholar
[9] Miki M 2002 J. Geophys. Res. 107 4277Google Scholar
[10] Giles J C, Prather W D 2013 IEEE Trans. Electromagn. Compat. 55 475Google Scholar
[11] 付尚琛, 石立华, 周颖慧, 郭一帆 2018 复合材料学报 35 2730
Fu S S, Shi L H, Zhou X H, Guo Y F 2018 Acta Mater. Compos. Sin. 35 2730
[12] 陈未远, 曾嵘, 梁曦东, 何金良 2006 清华大学学报 46 1641Google Scholar
Chen W Y, Zeng R, Liang Y D, He J L 2006 J. Tsinghua Univ. 46 1641Google Scholar
[13] Makris K G, El-Ganainy R, Christodoulides D N, et al. 2008 Phys. Rev. Lett. 100 103904Google Scholar
[14] Lin Z, Ramezani H, Eichelkraut T, et al. 2011 Phys. Rev. Lett. 106 213901Google Scholar
[15] Tsoy E N 2017 Phys. Lett. A 381 462Google Scholar
[16] Zi J W, Xu Y L, Kim J, O’Brien K, Wang Y, Feng L, Zhang X 2017 Nat. Photonics 10 796
[17] Govyadinov A A and Podolskiya V A, Noginov M A 2007 Appl. Phys. Lett. 91 191103Google Scholar
[18] Yariv A, Yeh P 2007 Photonics: Optical Electronics in Modern Communications (New York: Oxford University Press)
[19] Klimov V I, Mikhailovsky A A, Xu S, et al. 2000 Science 290 314Google Scholar
[20] 韦伟, 于建, 纪磊, 等 2005 人工晶体学报 34 628Google Scholar
Wei W, Yu J, Ji L 2005 J. Synth. Cryst. 34 628Google Scholar
[21] 奚庆新, 刘德安, 刘立人 2005 激光与光电子学进展 42 39
Xu Q X, Liu D A, Liu L R 2005 Laser & Optoelectron. Prog. 42 39
[22] 陈建华, 屈绍波, 魏晓勇, 徐卓, 朱林户 2008 无机材料学报 23 851Google Scholar
Chen J H, Qu S B, Wei X Y, Xu Z, Zhu L H 2008 J. Inorg. Mater. 23 851Google Scholar
[23] Luennemann M, Hartwig U, Panotopoulos G, et al. 2003 Appl. Phys. B 76 403Google Scholar
Catalog
Metrics
- Abstract views: 7710
- PDF Downloads: 104
- Cited By: 0