-
The vertical-cavity surface-emitting laser (VCSEL) is usually used as an 850nm short wavelength source for short-distance optical interconnection at normal temperature. In this study, the characterization of the VCSEL at low temperature was mainly studied. The laser spectra and the P-I-V curves are obtained with direct current and pulse current with 10% duty-cycle at different temperatures. It indicates that the VCSEL can work at 10K temperature environment. When the VCSEL laser is driven by direct current in a temperature range from 295 K to 10 K, the central wavelength of the laser is first red-shifted and then blue-shifted due to the change of environmental temperature and thermal effect on the device. With a pulsed-current driven source, the smaller the duty cycle, the less the heat generated by the device will be. The laser spectrum shows a blue-shift trend in the cooling process. The spectral width remains approximately stable in the cooling process. With temperature decreasing, the laser threshold current increases, and the lower the temperature, the larger the threshold current will be. It shows that the cavity mode and the gain spectrum shift with temperature changing. The cavity mode and the gain spectrum both shift to red with temperature increasing, and they shift to blue with temperature decreasing. But their shifting speeds are different. The mismatch between the cavity mode and the gain curve causes the device to need more energy for lasing. So the laser will work at a higher current driven at low temperature. The laser can work at low temperature as a stable light source. Therefore, the VCSEL has potential applications in optical interconnection system as a source at low temperature.
-
Keywords:
- laser /
- low temperature /
- spectrum
[1] Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar
[2] Suzuki N, Hatakeyama H, Yashiki K, Fukatsu K, Tokutome K, Akagawa T, Anan T, Tsuji M 2006 2006 Ieee Leos Annual Meeting Conference Proceedings, Vols 1 and 2 (New York: Ieee) pp508
[3] Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2001 15.6 gb/s transmission over 1km of next generation multimode fiber pp440-441
[4] Wistey M A, Bank S R, Yuen H B, Goddard L L, Harris J S 2003 Electron. Lett. 39 1822Google Scholar
[5] Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A, Ledentsov N N, Bimberg D 2011 Appl. Phys.Lett. 98 231106Google Scholar
[6] Suzuki N, Hatakeyama H, Fukatsu K, Anan T, Yashiki K, Tsuji A 2006 Electron. Lett. 42 975Google Scholar
[7] Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Jpn. J. Appl. Phys. Part 2 46 L512Google Scholar
[8] Chang Y C, Wang C S, Coldren L A 2007 Electron. Lett. 43 1022Google Scholar
[9] Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Ieee Photonics Tech. Lett. 19 1883Google Scholar
[10] Westbergh P, Gustavsson J S, Haglund A, Sunnerud H, Larsson A 2008 Electron. Lett. 44 907Google Scholar
[11] Valle A, Arizaleta M, Thienpont H, Panajotov K, Sciamanna M 2008 Appl. Phys. Lett. 93 131103Google Scholar
[12] Mueller M, Hofmann W, Gruendl T, Horn M, Wolf P, Nagel R D, Roenneberg E, Boehm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar
[13] Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109Google Scholar
[14] Westbergh P, Safaisini R, Haglund E, Gustavsson J S, Larsson A, Joel A (edited by Choquette K D, Guenter J K) 2013 Vertical-Cavity Surface-Emitting Lasers XVII
[15] Liu Y R, Davies A R, Ingham J D, Penty R V, White I H 2005 Ieee Photonics Technology Letters 17 2026Google Scholar
[16] Tell B, Browngoebeler K F, Leibenguth R E, Baez F M, Lee Y H 1992 Applied Physics Letters 60 683Google Scholar
[17] Andersson J Y, Lundqvist L 1991 Applied Physics Letters 59 857Google Scholar
[18] Erdogan T, King O, Wicks G W, Hall D G, Anderson E H, Rooks M J 1992 Applied Physics Letters 60 1921Google Scholar
[19] Lin H H, Lee S C 1985 Applied Physics Letters 47 839Google Scholar
[20] Yong J C L, Rorison J M, White I H 2002 Ieee Journal of Quantum Electronics 38 1553Google Scholar
[21] Lu B, Zhou P, Cheng J L, Malloy K J, Zolper J C 1994 Applied Physics Letters 65 1337Google Scholar
-
图 4 不同温度下10%占空比脉冲电流驱动器件特性测试结果. (a) 295 K条件下激光光谱; (b) 25 K条件下激射光谱; (c) 中心波长随温度的变化曲线; (d)光谱宽度随温度的变化曲线
Figure 4. The result of the VCSEL driven by pulse current with 10% pulse duty cycle at different temperatures. (a) The lasing spectrum at 295 K; (b) the lasing spectrumat at 25 K; (c) the relationship between the center wavelength and temperature; (d) the relationship between the spectral width and temperature.
图 5 温度对10%占空比脉冲驱动的激光器光电特性的影响 (a) 11 K温度下10%占空比脉冲电流驱动下功率-电流-电压曲线; (b) 295 K 温度下10%占空比脉冲电流驱动下的功率-电流-电压曲线; (c)阈值电流随温度的变化曲线; (d)微分电阻随温度的变化曲线.
Figure 5. The opoto-electrical properties of the VCSEL driven by pulse current with 10% duty cycle at various temperatures. (a) 11 K; (b) 295 K; (c) the laser threshold current as function of temperature; (d) the differential resistance as function of temperature.
-
[1] Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar
[2] Suzuki N, Hatakeyama H, Yashiki K, Fukatsu K, Tokutome K, Akagawa T, Anan T, Tsuji M 2006 2006 Ieee Leos Annual Meeting Conference Proceedings, Vols 1 and 2 (New York: Ieee) pp508
[3] Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2001 15.6 gb/s transmission over 1km of next generation multimode fiber pp440-441
[4] Wistey M A, Bank S R, Yuen H B, Goddard L L, Harris J S 2003 Electron. Lett. 39 1822Google Scholar
[5] Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A, Ledentsov N N, Bimberg D 2011 Appl. Phys.Lett. 98 231106Google Scholar
[6] Suzuki N, Hatakeyama H, Fukatsu K, Anan T, Yashiki K, Tsuji A 2006 Electron. Lett. 42 975Google Scholar
[7] Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Jpn. J. Appl. Phys. Part 2 46 L512Google Scholar
[8] Chang Y C, Wang C S, Coldren L A 2007 Electron. Lett. 43 1022Google Scholar
[9] Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Ieee Photonics Tech. Lett. 19 1883Google Scholar
[10] Westbergh P, Gustavsson J S, Haglund A, Sunnerud H, Larsson A 2008 Electron. Lett. 44 907Google Scholar
[11] Valle A, Arizaleta M, Thienpont H, Panajotov K, Sciamanna M 2008 Appl. Phys. Lett. 93 131103Google Scholar
[12] Mueller M, Hofmann W, Gruendl T, Horn M, Wolf P, Nagel R D, Roenneberg E, Boehm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar
[13] Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109Google Scholar
[14] Westbergh P, Safaisini R, Haglund E, Gustavsson J S, Larsson A, Joel A (edited by Choquette K D, Guenter J K) 2013 Vertical-Cavity Surface-Emitting Lasers XVII
[15] Liu Y R, Davies A R, Ingham J D, Penty R V, White I H 2005 Ieee Photonics Technology Letters 17 2026Google Scholar
[16] Tell B, Browngoebeler K F, Leibenguth R E, Baez F M, Lee Y H 1992 Applied Physics Letters 60 683Google Scholar
[17] Andersson J Y, Lundqvist L 1991 Applied Physics Letters 59 857Google Scholar
[18] Erdogan T, King O, Wicks G W, Hall D G, Anderson E H, Rooks M J 1992 Applied Physics Letters 60 1921Google Scholar
[19] Lin H H, Lee S C 1985 Applied Physics Letters 47 839Google Scholar
[20] Yong J C L, Rorison J M, White I H 2002 Ieee Journal of Quantum Electronics 38 1553Google Scholar
[21] Lu B, Zhou P, Cheng J L, Malloy K J, Zolper J C 1994 Applied Physics Letters 65 1337Google Scholar
Catalog
Metrics
- Abstract views: 8263
- PDF Downloads: 97
- Cited By: 0