Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in dry low-temperature scanning probe microscopy system development

Huang Yuan-Zhi Yang Chuan-Hao He Song-Ping Ma Rui-Song Huan Qing

Citation:

Advances in dry low-temperature scanning probe microscopy system development

Huang Yuan-Zhi, Yang Chuan-Hao, He Song-Ping, Ma Rui-Song, Huan Qing
cstr: 32037.14.aps.73.20241367
PDF
HTML
Get Citation
  • Since the beginning of the 21st century, scanning probe microscopy (SPM) has played an increasingly important role in investigating the micro- and nanoscale surface characterization, physical property measurement, and micro/nano fabrication. To provide a more stable operating environment and higher energy resolution for SPM, researchers have developed low-temperature scanning probe microscopy (LT-SPM) systems that operate under the conditions of ultra-high vacuum and low temperature. Currently, most of LT-SPM systems have achieved temperatures around 4.2 K by supplying liquid helium-4 (4He) to continuous flow cryostats or low-temperature Dewars. However, due to the low natural abundance of 4He and its increasing demand, the significant increase in the price of liquid helium has seriously affected the normal operation of 4He-based low temperature equipment. To solve this problem, dry (cryogen-free) refrigeration technology has emerged as a promising alternative to the next-generation low-temperature systems. In this context, the integration of dry refrigeration technology with SPM to construct Dry-LT-SPM systems has become a key research focus in the field of scanning probe instruments.This paper mainly discusses several reported closed-cycle Dry-LT-SPM systems, focusing on aspects such as system design, refrigeration schemes, vibration reduction methods, and overall performance. Finally, this paper summarizes the current challenges and problems faced by Dry-LT-SPM systems and explores potential future developments in this field.

    Erratum: Advances in dry low-temperature scanning probe microscopy system development [Acta Phys. Sin.]

    Huang Yuan-Zhi, Yang Chuan-Hao, He Song-Ping, Ma Rui-Song, Huan Qing. Erratum: Advances in dry low-temperature scanning probe microscopy system development. Acta Phys. Sin., doi: 10.7498/aps.73.249901
      Corresponding author: Ma Rui-Song, mars@iphy.ac.cn ; Huan Qing, huanq@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. T2125014, 11927808, 12004417) and the CAS Key Technology Research and Development Team Project (Grant No. GJJSTD20200005).
    [1]

    Wu Z B, Gao Z Y, Chen X Y, et al. 2018 Rev. Sci. Instrum. 89 113705Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Method. Prime. 1 36Google Scholar

    [3]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [4]

    Watkins N J, Long J P, Kafafi Z H, Mäkinen A J 2007 Rev. Sci. Instrum. 78 053707Google Scholar

    [5]

    Grafström S 2002 J. Appl. Phys. 91 1717Google Scholar

    [6]

    Flores S M, Toca-Herrera J L 2009 Nanoscale 1 40Google Scholar

    [7]

    Bharat B 2004 Handbook of Nanotechnology (Springer

    [8]

    Baykara M Z, Morgenstern M, Schwarz A, Schwarz U D 2017 Handbook of Nanotechnology (Berlin: Springer) pp769–808

    [9]

    Behler S, Rose M K, Dunphy J C, Ogletree D F, Salmeron M, Chapelier C 1997 Rev. Sci. Instrum. 68 2479Google Scholar

    [10]

    Stipe B C, Rezaei M A, Ho W 1999 Rev. Sci. Instrum. 70 137Google Scholar

    [11]

    Meyer G 1996 Rev. Sci. Instrum. 67 2960Google Scholar

    [12]

    Elrod S A, Lozanne A L D, Quate C F 1984 Applied Physics Letters 45 1240Google Scholar

    [13]

    He G, Wei Z X, Feng Z P, Yu X D, Zhu B Y, Liu L, Jin K, Yuan J, Huan Q 2020 Rev. Sci. Instrum. 91 013904Google Scholar

    [14]

    Chaudhary S, Panda J J, Mundlia S, Mathimalar S, Ahmedof A, Raman K V 2021 Rev. Sci. Instrum. 92 023906Google Scholar

    [15]

    Zhao Z, Wang C 2019 Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press

    [16]

    Wong D, Jeon S, Nuckolls K P, Oh M, Kingsley S C J, Yazdani A 2020 Rev. Sci. Instrum. 91 023703Google Scholar

    [17]

    Hackley J D, Kislitsyn D A, Beaman D K, Ulrich S, Nazin G V 2014 Rev. Sci. Instrum. 85 103704Google Scholar

    [18]

    Zhang S, Huang D, Wu S W 2016 Rev. Sci. Instrum. 87 063701Google Scholar

    [19]

    Kasai J, Koyama T, Yokota M, Iwaya K 2022 Rev. Sci. Instrum. 93 043711Google Scholar

    [20]

    Huang H M, Shuai M M, Yang Y L, Song R, Liao Y H, Yin L M, Shen J 2022 Rev. Sci. Instrum. 93 073703Google Scholar

    [21]

    Meng W J, Wang J H, Hou Y B, et al. 2019 Ultramicroscopy 205 20Google Scholar

    [22]

    Coe A M, Li G H, Andrei E Y 2024 Rev. Sci. Instrum. 95 083702Google Scholar

    [23]

    Ma R S, Li H, Shi C S, et al. 2023 Rev. Sci. Instrum. 94 093701Google Scholar

  • 图 1  主流低温SPM设备所采用的降温方式 (a)基于连续流式低温恒温器的SPM设备; (b)基于低温杜瓦恒温器的SPM设备

    Figure 1.  Cooling methods used in mainstream low temperature SPM equipment: (a) SPM system based on a continuous flow heat exchanger; (b) SPM system based on a low-temperature Dewar cryostat.

    图 2  干式制冷部分实物图[17] (a) GM机与SPM部分的连接部分照片, 该方案采用橡胶波纹管连接制冷机和STM上方的二级热交换器; (b) LT-STM系统部分系统实物图, 低温恒温器安装在LT-STM系统上方的刚性支架上, 刚性支架与LT-STM系统没有刚性接触

    Figure 2.  Photograph of Dry refrigeration[17]: (a) Photo of the connection part between the GM cryocooler cold head and the SPM part, this solution uses rubber bellows to connect the refrigerator and cold finger above the STM; (b) photo of the LT-STM system, the cryostat is mounted on a rigid support above the LT-STM system, the rigid support has no rigid contact with the LT-STM system.

    图 3  STM扫描探头悬挂在屏蔽罩内[17] (a)带有屏蔽罩的STM前视图; (b) STM的侧视图, 内部屏蔽罩直接与二级热交换器相连

    Figure 3.  The STM scanner is suspended in the shielding[17]: (a) Front view of STM with shield; (b) side view of the STM, with the internal shield directly connected to the cold finger.

    图 4  Dry-LT-STM获得的若干图像[17] (a) Au(111)原子分辨; (b) NaCl(100)原子分辨

    Figure 4.  STM images obtained by the Dry-LT-STM[17]: (a) Atomic resolution of Au(111); (b) atomic resolution of NaCl(100).

    图 5  (a) Dry-LT-STM系统示意图[18], 制冷机(蓝色)安装在刚性支架上, LT-STM系统放在含有气腿(橙色)的实验台上, 两者通过橡胶波纹管与LT-STM系统连接; (b)闭循环制冷部分示意图, 氦气在制冷机(紫色)和热交换器界面(青色)之间, 氦气由两级橡胶管(黑色)密封; (c) STM扫描探头示意图, 激光通过两种透镜聚焦在STM上, 并通过雪崩光电二极管或光谱仪从STM收集光信号

    Figure 5.  (a) Schematic diagram of the Dry-LT-STM system[18], the cryocooler (blue) is mounted on a rigid frame and the LT-STM system is placed on the vibration isolation table containing the gas legs (orange), both of which are connected to the LT-STM system via rubber bellows; (b) schematic diagram of the closed-cycle refrigeration section, helium gas is filled between the cryocooler (purple) and stage interfaces (cyan), the helium is sealed by two-stage rubber bellow (black); (c) schematic of the STM scanning head. The laser is focused on the STM by two lenses and the optical signal is collected from the STM by means of a APD or a spectrometer.

    图 6  (a)石墨表面的原子分辨图像, 样品温度为16.8 K; (b)石墨表面的dI/dV谱; (c) CO分子的I/V谱, dI/dV谱和IETS谱[18]

    Figure 6.  (a) Atomic-resolution image of graphite surface, the sample temperature is 16.8 K; (b) dI/dV spectrum of graphite surface; (c) I/V spectrum, dI/dV spectrum and IETS spectrum of CO molecules[18].

    图 7  (a)日本UNISOKU公司的LT-STM系统示意图; (b) PT制冷机和SPM扫描探头的示意图, PT制冷机两级冷台、PTFE波纹管和低温恒温器围成的区域充满氦气, 扫描腔则保持在超高真空状态[19]

    Figure 7.  (a) Schematic diagram of the LT-STM system of Japanese UNISOKU company; (b) schematic of PT refrigerator (cryocooler) and SPM scanner, the area enclosed by the cooling stages, PTFE bellows and cryostat is filled with helium, while the SPM chamber is maintained in ultra-high vacuum condition[19].

    图 8  (a)搭建Dry-LT-SPM设备整体系统设计示意图[20]. 1-涡旋泵, 2-氦气罐, 3-氦气管道, 4-干式制冷超导磁体, 5-刚性支架, 6-PT制冷机, 7-低温恒温器, 8-STM腔体, 9-氩离子源, 10-MBE腔体, 11-MBE蒸发源, 12-快速进样腔, 13-传输杆, 14-主动减振平台. (b)制冷系统(左)和扫描探头(右)示意图, 1-PT制冷机, 2-金属焊接波纹管, 3-低温恒温器接口, 4-氦气, 5-液氦, 6-针阀, 7-AFM的前置放大器, 8-屏蔽罩, 9-扫描探头, 10-干式制冷超导磁体, 11-毛细管, 12-加热器–1, 13-排气阀, 14-1 K池, 15-加热器–2, 16-弹簧, 17-信号线插口, 18-磁阻尼铜板

    Figure 8.  (a) Schematic diagram of the overall system design of the dry SPM equipment[20]. 1-scroll pump, 2-helium tank, 3-helium pipeline, 4-cryogen-free superconducting magnet, 5-supporting frame, 6-PT refrigerator, 7-cryostat, 8-STM chamber, 9-argon ion beam bombardment, 10-MBE chamber, 11-MBE evaporation sources, 12-load-lock chamber, 13-transfer rod, 14-active air damping. (b) Schematic diagram of the refrigeration system (left) and scanner (right), 1-PT cryocooler, 2-vibration-isolated bellows, 3-cryostat interface, 4-helium gas, 5-LHe, 6-needle valve, 7-the preamplifier of AFM, 8-thermal shield, 9-scanning head, 10-superconducting magnet, 11-pumping pipe, 12-heater-1, 13-exhaust valve, 14-1 K-pot, 15-heater-2, 16-spring, 17-socket, 18-copper plate for eddy current damping.

    图 9  Ir(111)表面Fe原子所形成HCP岛skyrmion超晶格的SP-STM和MExFM图像[20]

    Figure 9.  SP-STM and MExFM images of the HCP island skyrmion superlattice formed by Fe atoms on the Ir(111) surface[20].

    图 10  搭建Dry-LT-SPM设备采用的8 T干式超导磁体结构及其横截面示意图[21]

    Figure 10.  Structure and cross-sectional view of the 8 T dry superconducting magnet used in Dry-LT-SPM equipment[21].

    图 11  基于干式超导磁体的STM结构设计图[21] (a) STM探头部分的构型图; (b) STM扫描探头构形图

    Figure 11.  Cryogen-free STM design based on cryogen-free superconducting magnets[21]: (a) Diagram of the STM probe configuration; (b) diagram of the STM scanner.

    图 12  NbSe2的原子分辨和添加磁场后的图像[21]

    Figure 12.  Atomic-resolution STM image of NbSe2 with sweeping magnetic field[21].

    图 13  (a)飞梭扫描探头与在UHV插件横截面; (b) UHV插件横截面, 未按比例绘制[22]

    Figure 13.  (a) Shuttle-style STM head and UHV plug cross-section; (b) UHV plug cross-section, not to scale[22].

    图 14  (a)在4.6 K下, HOPG表面的原子分辨; (b)在20 K, 5 T的磁场下, HOPG显示出朗道能级[22]

    Figure 14.  (a) Atomic resolution of the HOPG surface at 4.6 K; (b) Landau levels of HOPG at 20 K with 5 T magnetic field applied[22]

    图 15  制冷机在SPM腔体顶部的Dry-LT-STM系统

    Figure 15.  Dry-LT-STM system with refrigerator on top of SPM chamber.

    图 16  制冷机与SPM腔体分离的LT-STM系统示意图[23]

    Figure 16.  Schematic diagram of the LT-STM system with the dry refrigerator and SPM chamber separated[23].

    图 17  基于远端液化方案的Dry-LT-STM系统的三维模型[23]

    Figure 17.  Three-dimensional model of the cryogen-free LT-STM system based on the remote liquefaction scheme[23].

    图 18  搭建Dry-LT-SPM的成像和隧道谱性能表征[23] (a) Au(111)表面的鱼骨形重构; (b) Au(111)表面的原子分辨; (c)金原子沿图(b)中红线的线剖面图; (d) Au(111)表面FCC和HCP位点的dI/dV谱; (e) Ag(110)表面的大范围STM 图像; (f) Ag(110)表面的原子分辨STM图像; (g) Ag原子沿图(f)中红线的线剖面图; (h) Ag(110)表面的dI/dV

    Figure 18.  Imaging and tunneling spectrum performance characterization of the Dry-LT-SPM[23]: (a) Herringbone reconstruction of the Au(111) surface; (b) atomic resolution of the Au(111) surface; (c) line profile of gold atoms along the red line shown in panel (b); (d) dI/dV spectra of FCC and HCP sites on Au(111) surface; (e) large-scale STM image of the Ag(110) surface; (f) atomic-resolved STM image of the Ag(110) surface; (g) line profile of Ag atoms along the red line shown in panel (f); (h) dI/dV spectrum of Ag(110) surface.

    图 19  基于远端液化方案的SPM系统的谱学成像表征[23] (a) CO分子沉积在Ag(110)表面; (b)能够被探针捡起; (c)能获得高质量的IETS谱; (d)—(f)在CO分子上取得隧道电流谱, STS谱以及IETS谱学图像, 成像参数为110 pA, 9.6 mV

    Figure 19.  Spectroscopic imaging performance of the SPM system based on the remote liquefaction scheme[23]: (a) CO molecules are deposited on the Ag(110) surface; (b) can be picked up by the probe; (c) high-quality IETS spectra can be obtained; (d)–(f) tunnelling current spectrum, STS spectrum and IETS spectroscopy images on CO molecules with setpoint of 110 pA and 9.6 mV.

  • [1]

    Wu Z B, Gao Z Y, Chen X Y, et al. 2018 Rev. Sci. Instrum. 89 113705Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Method. Prime. 1 36Google Scholar

    [3]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [4]

    Watkins N J, Long J P, Kafafi Z H, Mäkinen A J 2007 Rev. Sci. Instrum. 78 053707Google Scholar

    [5]

    Grafström S 2002 J. Appl. Phys. 91 1717Google Scholar

    [6]

    Flores S M, Toca-Herrera J L 2009 Nanoscale 1 40Google Scholar

    [7]

    Bharat B 2004 Handbook of Nanotechnology (Springer

    [8]

    Baykara M Z, Morgenstern M, Schwarz A, Schwarz U D 2017 Handbook of Nanotechnology (Berlin: Springer) pp769–808

    [9]

    Behler S, Rose M K, Dunphy J C, Ogletree D F, Salmeron M, Chapelier C 1997 Rev. Sci. Instrum. 68 2479Google Scholar

    [10]

    Stipe B C, Rezaei M A, Ho W 1999 Rev. Sci. Instrum. 70 137Google Scholar

    [11]

    Meyer G 1996 Rev. Sci. Instrum. 67 2960Google Scholar

    [12]

    Elrod S A, Lozanne A L D, Quate C F 1984 Applied Physics Letters 45 1240Google Scholar

    [13]

    He G, Wei Z X, Feng Z P, Yu X D, Zhu B Y, Liu L, Jin K, Yuan J, Huan Q 2020 Rev. Sci. Instrum. 91 013904Google Scholar

    [14]

    Chaudhary S, Panda J J, Mundlia S, Mathimalar S, Ahmedof A, Raman K V 2021 Rev. Sci. Instrum. 92 023906Google Scholar

    [15]

    Zhao Z, Wang C 2019 Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press

    [16]

    Wong D, Jeon S, Nuckolls K P, Oh M, Kingsley S C J, Yazdani A 2020 Rev. Sci. Instrum. 91 023703Google Scholar

    [17]

    Hackley J D, Kislitsyn D A, Beaman D K, Ulrich S, Nazin G V 2014 Rev. Sci. Instrum. 85 103704Google Scholar

    [18]

    Zhang S, Huang D, Wu S W 2016 Rev. Sci. Instrum. 87 063701Google Scholar

    [19]

    Kasai J, Koyama T, Yokota M, Iwaya K 2022 Rev. Sci. Instrum. 93 043711Google Scholar

    [20]

    Huang H M, Shuai M M, Yang Y L, Song R, Liao Y H, Yin L M, Shen J 2022 Rev. Sci. Instrum. 93 073703Google Scholar

    [21]

    Meng W J, Wang J H, Hou Y B, et al. 2019 Ultramicroscopy 205 20Google Scholar

    [22]

    Coe A M, Li G H, Andrei E Y 2024 Rev. Sci. Instrum. 95 083702Google Scholar

    [23]

    Ma R S, Li H, Shi C S, et al. 2023 Rev. Sci. Instrum. 94 093701Google Scholar

  • [1] Huang Yuan-Zhi, Yang Chuan-Hao, He Song-Ping, Ma Rui-Song, Huan Qing. Erratum: Advances in dry low-temperature scanning probe microscopy system development. Acta Physica Sinica, 2024, 73(24): 249901. doi: 10.7498/aps.73.249901
    [2] Tian Guo, Fan Zhen, Chen De-Yang, Hou Zhi-Peng, Liu Jun-Ming, Gao Xing-Sen. Laboratory experiments based on tip probe - Scanning probe detection and regulation of ferroelectric domains and their microscopic physical properties. Acta Physica Sinica, 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [3] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [4] Shi Hui-Min, Hu Jing, Wang Cheng-Hui, Feng Fei-Long, Mo Run-Yang. Vibrational behavior of coated microbubble in finite tube under magneto-acoustic composite field. Acta Physica Sinica, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [5] Qin Lu, Ren Jie, Xu Xing-Sheng. Optoelectronic properties of vertical-cavity surface-emitting laser at low temperature. Acta Physica Sinica, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [6] Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry. Acta Physica Sinica, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [7] Ding Kun, Wu Xue-Fei, Dou Xiu-Ming, Sun Bao-Quan. In situ tuning hydrostatic pressure at low temperature using electrically driven diamond anvil cell. Acta Physica Sinica, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [8] Cao Shan, Liu Jiang-Ping, Li Jun, Wang Kai, Lin Wei, Lei Hai-Le. Infrared absorption characteristics of solid nitrogen at near-triple point temperatures. Acta Physica Sinica, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [9] Nan Yi-Bing, Tang Yi, Zhang Li-Jun, Chang Yue-E, Chen Ting-Ai. A sectioned method to correct spectral imaging data degraded by satellite vibrations. Acta Physica Sinica, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [10] Hu Ge-Li, Ni Zhi-Peng, Wang Qiu-Liang. A target field method for designing cylindrical z-gradient coil combined with vibration control. Acta Physica Sinica, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [11] Zhang Fu-Weng, Wang Li, Liu Chuan-Ping, Wu Ping. The rising motion of grains in a vibrating pipe. Acta Physica Sinica, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [12] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [13] He Yong-Zhou, Zhou Qiao-Gen. Magnetic properties of permanent magnet for cryogenic undulator of permanent Shanghai synchrotron radiation facility. Acta Physica Sinica, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [14] Tang Qiu-Yan, Tang Yi, Cao Wei-Liang, Wang Jing, Nan Yi-Bing, Ni Guo-Qiang. Simulation of imaging spectrometers degraded by satellite vibrations. Acta Physica Sinica, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [15] Qian Jian-Qiang, Wang Xi, Yao Jun-En, Hua Bao-Cheng. Mechanical model of tuning forks used in scanning probe microscopes. Acta Physica Sinica, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [16] Feng Hai-Ran, Li Peng, Zheng Yu-Jun, Ding Shi-Liang. Dynamical entanglement of vibrations in the linear triatomic molecule by the algebraic approach. Acta Physica Sinica, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [17] Li Xu-Jie, Nie Qiu-Hua, Dai Shi-Xun, Xu Tie-Feng, Shen Xiang, Zhang Xiang-Hua. Low temperature emission characteristics of an ytterbium sensitized erbium-doped tellurite glass. Acta Physica Sinica, 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [18] Xu Geng-Zhao, Liang Hu, Bai Yong-Qiang, Lau Kei-May, Zhu Xing. Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy. Acta Physica Sinica, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [19] Jiang Ze-Hui, Lu Kun-Quan, Hou Mei-Ying, Chen Wei, Che n Xiang-Jun. Sandwich-like segregation in vertically vibrated binary granular mixtures. Acta Physica Sinica, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
    [20] ZHANG TING-QING, LIU CHUAN-YANG, LIU JIA-LU, WANG JIAN-PING, HUANG ZHI, XU NA-JUN, HE BAO-PING, PENG HONG-LUN, YAO YU-JUAN. RADIATION EFFECTS OF MOS DEVICE AT LOW DOSE RATE AND LOW TEMPERATURE. Acta Physica Sinica, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
Metrics
  • Abstract views:  1009
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  28 September 2024
  • Accepted Date:  19 October 2024
  • Available Online:  31 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回