Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pedestrian-vehicle interference at a signalized crossing based on detailed microscopic traffic flow models

Tao Yi-Zhou Wei Yan-Fang Gao Qing-Fei Dong Li-Yun

Citation:

Pedestrian-vehicle interference at a signalized crossing based on detailed microscopic traffic flow models

Tao Yi-Zhou, Wei Yan-Fang, Gao Qing-Fei, Dong Li-Yun
PDF
HTML
Get Citation
  • Interference between pedestrians and motor vehicles at signalized intersections not only leads the traffic to delay and traffic efficiency to decrease, but also induces traffic crashes to happen frequently. In this paper, a microscopic discrete model for traffic flow is adopted to study the mutual interference mechanism between pedestrians and vehicles at signalized intersection. The vehicular traffic flow model is based on the refined NaSch model, and traffic lights are introduced to consider the driver anticipating in traffic signal switching. Based on the multi-step lattice gas model, the pedestrian flow model considers the fact that the pedestrians’ speed increases gradually during pedestrian cross-street green time. Both models reflect real features of movement of vehicles (pedestrians) in daily life. When the traffic light signal switches, the vehicles (pedestrians) staying in the conflict area result in the delay of pedestrians (vehicles). It is assumed that pedestrians and vehicles cannot coexist in the conflict area at the same time. In the simulation, the periodic boundary condition is applied to the lane, and the open boundary condition is applied to the crosswalk. The arrival rate of pedestrian is assumed to satisfy the Poisson distribution. Both the fundamental diagram of vehicular traffic flow and the pedestrian waiting time are calculated, and the phase diagram revealing the global nature of the presented model is obtained accordingly. The quantitative characteristics of vehicle (pedestrian) delay time caused by pedestrians (vehicles) staying in the conflict area are given as well. Simulation results show that there is a critical split. When the split is less than the critical value, three kinds of traffic phases, i.e., free flow phase, saturated flow phase, and jamming flow phase, appear with the increase of density. When the split is larger than the critical value, four kinds of traffic phases, i.e., free flow phase, coexisting phase, saturated flow phase, and jamming flow phase are distinguished. The delay caused by the mutual interference between pedestrians and motor vehicles is closely related to the state of vehicle flow and the state of pedestrian flow. When the arrival rate of pedestrians is quite large and the split is large enough, these pedestrians in the waiting area cannot be emptied once in a single pedestrian cross-street cycle. The qualitative and quantitative characteristics of mutual interference between pedestrians and vehicles are discussed in more detail. The setting of a reasonable split not only ensures the efficiency of traffic flow, but also reduces the waiting time of pedestrians to cross the street.
      Corresponding author: Dong Li-Yun, dly@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572184, 11562020), the National Basic Research Program of China (Grant No. 2012CB725404), and the Shanghai Research Foundation of Shanghai Institute of Technology, China (Grant No. 39120K196008- A06)
    [1]

    Lam W H K, Lee J Y S, Cheung C Y 2002 Transportation 29 169Google Scholar

    [2]

    李文勇, 陈学武, 王庆, 李娜 2006 武汉理工大学学报 (交通科学与工程版) 30 751

    Li W Y, Chen X W, Wang Q, Li N 2006 J. Wuhan Univ. Tech. (Transp. Sci. & Eng.) 30 751

    [3]

    Guo Y Y, Sayed T, Zaki M H 2017 IET Intell. Transp. Sy. 11 28Google Scholar

    [4]

    Biswas S, Ghosh I, Chandra S 2017 Transp. Dev. Econ. 3 2Google Scholar

    [5]

    Zhang Y H, Mamun S A, Ivan J N, Ravishanker N, Haque A 2015 Accident Anal. Prev. 83 26Google Scholar

    [6]

    Ni Y, Wang M L, Sun J, Li K P 2016 Accident Anal. Prev. 96 118

    [7]

    Lee J Y S, Lam W H K 2008 Transp. Res. A 42 1314

    [8]

    Li X, Dong L Y 2012 Chin. Phys. Lett. 29 098902Google Scholar

    [9]

    Li S S, Qian D L, Luo U 2012 J. Cent. South Univ. 19 3351Google Scholar

    [10]

    Zeng W L, Chen P, Nakamura H, Tryo-Asano M 2014 Transp. Res. C 40 143Google Scholar

    [11]

    Lu L L, Ren G, Wang W, Chan C Y 2015 Transp. Res. A 80 76

    [12]

    Belbasi S, Foulaadvand M E 2008 J. Stat. Mech. 2008 P07021

    [13]

    Myozin S 1965 T. Jpn. Soc. Civil Eng. 1965 42

    [14]

    Xie D F, Zhao X M, Li X G 2015 Int. J. Mod. Phys. C 26 1550019Google Scholar

    [15]

    Zeng J W, Yu S B, Qian Y S, Wei X T, Feng X, Wang H 2017 Mod. Phys. Lett. B 31 1750238

    [16]

    Helbing D, Jiang R, Treiber M 2005 Phys. Rev. E 72 046130Google Scholar

    [17]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [18]

    Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y 1995 Phys. Rev. E 51 1035Google Scholar

    [19]

    Nagel K, Schreckenberg M 1992 J. Phys. I (France) 2 2221Google Scholar

    [20]

    Blue V J, Adler J L 2001 Transp. Res. B 35 293Google Scholar

    [21]

    Barlovic R, Santen L, Schadschneider A, Schreckenberg M 1998 Eur. Phys. J. B 5 793Google Scholar

    [22]

    Zhang U, Duan H L, Zhang Y 2007 Tsinghua Sci. Technol. 12 214Google Scholar

    [23]

    Guo R Y, Guo X 2011 Chin. Phys. Lett. 28 118903Google Scholar

    [24]

    Xie D F, Gao Z Y, Zhao X M, Wang Z W 2012 J. Transp. Eng. 138 1442Google Scholar

    [25]

    Li X M, Yan X D, Li X G, Wang J F 2012 Discrete Dyn. Nat. Soc. 2012 287502

    [26]

    孙泽, 贾斌 2012 物理学报 61 100508Google Scholar

    Sun Z, Jia B 2012 Acta Phys. Sin. 61 100508Google Scholar

    [27]

    余艳, 白克钊, 孔令江 2013 广西师范大学学报(自然科学版) 31 6

    Yu Y, Bai K Z, Kong L J 2013 J. Guangxi Normal Univ. (Nat. Sci. Ed.) 31 6

    [28]

    Guo R Y, Lu X S 2016 J. Syst. Sci. Complex 29 202Google Scholar

    [29]

    Li X, Sun J Q 2016 Physica A 460 335Google Scholar

    [30]

    Echab H, Ez-Zahraouy H, Lakouari N 2016 Physica A 461 854Google Scholar

    [31]

    Deb S, Strawderman L J, Carruth D W 2018 Transp. Res. F 59 135Google Scholar

    [32]

    陈然, 李翔, 董力耘 2012 物理学报 61 144502Google Scholar

    Chen R, Li X, Dong L Y 2012 Acta Phys. Sin. 61 144502Google Scholar

    [33]

    马新露, 孙惠芳 2014 交通运输系统工程与信息 8 59Google Scholar

    Ma X L, Sun H F 2014 J. Transp. Syst. Eng. Info. Tech. 8 59Google Scholar

  • 图 1  信号交叉口人-车相互作用示意图

    Figure 1.  Schematic diagram for vehicle-pedestrian interaction at a signalized crossing

    图 2  不同绿信比下车辆运动基本图 (a)流量-密度曲线(μ = 0.5); (b)速度-密度曲线(μ = 0.5); (c)流量-密度曲线(μ = 0.9); (d)速度-密度曲线(μ = 0.9)

    Figure 2.  Fundamental diagrams for vehicles under different splits: (a) Flux-density relation (μ = 0.5); (b) speed-density relation (μ = 0.5); (c) flux-density relation (μ = 0.9); (d) speed-density relation (μ = 0.9).

    图 3  车辆运动时空演化斑图($\lambda = 1.0$) (a) k = 0.08, μ = 0.5; (b) k = 0.40, μ = 0.5; (c) k = 0.70, μ = 0.5; (d) k = 0.15, μ = 0.9

    Figure 3.  Temporal-spatial patterns of vehicles in motion ($\lambda = 1.0$): (a) k = 0.08, μ = 0.5; (b) k = 0.40, μ = 0.5; (c) k = 0.70, μ = 0.5; (d) k = 0.15, μ = 0.9.

    图 4  不同绿信比下行人等待时间随车辆密度的变化 (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9

    Figure 4.  Waiting time of pedestrian varies with vehicle density under different splits: (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9.

    图 5  不同绿信比下行人等待时间随行人到达率的变化 (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9

    Figure 5.  Waiting time of pedestrians varies with the arrival rate of pedestrian under different splits: (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9.

    图 6  不同绿信比时车辆所导致的行人延误 (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9

    Figure 6.  Pedestrian delay time caused by vehicles under different splits: (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9.

    图 7  不同绿信比时行人造成车辆的延误 (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9

    Figure 7.  Vehicle delay time caused by pedestrians under different splits: (a) μ = 0.5; (b) μ = 0.8; (c) μ = 0.9.

    图 8  车流量随车辆密度和行人到达率的变化 (a) μ = 0.5; (b) μ = 0.9

    Figure 8.  Flux as a function of vehicle density and pedestrian arrival rate: (a) μ = 0.5; (b) μ = 0.9

    图 9  行人等待时间随车辆密度和行人到达率的变化 (a) μ = 0.5; (b) μ = 0.9

    Figure 9.  Waiting time of pedestrian as a function of vehicle density and pedestrian arrival rate: (a) μ = 0.5; (b) μ = 0.9.

    图 10  (λ, k)空间中的相图 (a) μ = 0.5; (b) μ = 0.9

    Figure 10.  Phase diagram in (λ, k) space: (a) μ = 0.5, (b) μ = 0.9.

    表 1  各种情况下行人向邻近元胞的行走概率

    Table 1.  Probabilities for a pedestrian to move towards his/her neighboring cells

    ${S_i}$
    (0, 0, 0)(1, 0, 0)(0, 0, 1)(0, 1, 0)(1, 0, 1)(0, 1, 1)(1, 1, 0)(1, 1, 1)
    ${p_{\rm{L}}}$$\dfrac{{1 - p}}{3}$0$\dfrac{{1 - p}}{2}$1/20100
    ${p_{\rm{F}}}$$p + \dfrac{{1 - p}}{3}$$p + \dfrac{{1 - p}}{2}$$p + \dfrac{{1 - p}}{2}$01000
    ${p_{\rm{R}}}$$\dfrac{{1 - p}}{3}$$\dfrac{{1 - p}}{2}$01/20010
    DownLoad: CSV
  • [1]

    Lam W H K, Lee J Y S, Cheung C Y 2002 Transportation 29 169Google Scholar

    [2]

    李文勇, 陈学武, 王庆, 李娜 2006 武汉理工大学学报 (交通科学与工程版) 30 751

    Li W Y, Chen X W, Wang Q, Li N 2006 J. Wuhan Univ. Tech. (Transp. Sci. & Eng.) 30 751

    [3]

    Guo Y Y, Sayed T, Zaki M H 2017 IET Intell. Transp. Sy. 11 28Google Scholar

    [4]

    Biswas S, Ghosh I, Chandra S 2017 Transp. Dev. Econ. 3 2Google Scholar

    [5]

    Zhang Y H, Mamun S A, Ivan J N, Ravishanker N, Haque A 2015 Accident Anal. Prev. 83 26Google Scholar

    [6]

    Ni Y, Wang M L, Sun J, Li K P 2016 Accident Anal. Prev. 96 118

    [7]

    Lee J Y S, Lam W H K 2008 Transp. Res. A 42 1314

    [8]

    Li X, Dong L Y 2012 Chin. Phys. Lett. 29 098902Google Scholar

    [9]

    Li S S, Qian D L, Luo U 2012 J. Cent. South Univ. 19 3351Google Scholar

    [10]

    Zeng W L, Chen P, Nakamura H, Tryo-Asano M 2014 Transp. Res. C 40 143Google Scholar

    [11]

    Lu L L, Ren G, Wang W, Chan C Y 2015 Transp. Res. A 80 76

    [12]

    Belbasi S, Foulaadvand M E 2008 J. Stat. Mech. 2008 P07021

    [13]

    Myozin S 1965 T. Jpn. Soc. Civil Eng. 1965 42

    [14]

    Xie D F, Zhao X M, Li X G 2015 Int. J. Mod. Phys. C 26 1550019Google Scholar

    [15]

    Zeng J W, Yu S B, Qian Y S, Wei X T, Feng X, Wang H 2017 Mod. Phys. Lett. B 31 1750238

    [16]

    Helbing D, Jiang R, Treiber M 2005 Phys. Rev. E 72 046130Google Scholar

    [17]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [18]

    Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y 1995 Phys. Rev. E 51 1035Google Scholar

    [19]

    Nagel K, Schreckenberg M 1992 J. Phys. I (France) 2 2221Google Scholar

    [20]

    Blue V J, Adler J L 2001 Transp. Res. B 35 293Google Scholar

    [21]

    Barlovic R, Santen L, Schadschneider A, Schreckenberg M 1998 Eur. Phys. J. B 5 793Google Scholar

    [22]

    Zhang U, Duan H L, Zhang Y 2007 Tsinghua Sci. Technol. 12 214Google Scholar

    [23]

    Guo R Y, Guo X 2011 Chin. Phys. Lett. 28 118903Google Scholar

    [24]

    Xie D F, Gao Z Y, Zhao X M, Wang Z W 2012 J. Transp. Eng. 138 1442Google Scholar

    [25]

    Li X M, Yan X D, Li X G, Wang J F 2012 Discrete Dyn. Nat. Soc. 2012 287502

    [26]

    孙泽, 贾斌 2012 物理学报 61 100508Google Scholar

    Sun Z, Jia B 2012 Acta Phys. Sin. 61 100508Google Scholar

    [27]

    余艳, 白克钊, 孔令江 2013 广西师范大学学报(自然科学版) 31 6

    Yu Y, Bai K Z, Kong L J 2013 J. Guangxi Normal Univ. (Nat. Sci. Ed.) 31 6

    [28]

    Guo R Y, Lu X S 2016 J. Syst. Sci. Complex 29 202Google Scholar

    [29]

    Li X, Sun J Q 2016 Physica A 460 335Google Scholar

    [30]

    Echab H, Ez-Zahraouy H, Lakouari N 2016 Physica A 461 854Google Scholar

    [31]

    Deb S, Strawderman L J, Carruth D W 2018 Transp. Res. F 59 135Google Scholar

    [32]

    陈然, 李翔, 董力耘 2012 物理学报 61 144502Google Scholar

    Chen R, Li X, Dong L Y 2012 Acta Phys. Sin. 61 144502Google Scholar

    [33]

    马新露, 孙惠芳 2014 交通运输系统工程与信息 8 59Google Scholar

    Ma X L, Sun H F 2014 J. Transp. Syst. Eng. Info. Tech. 8 59Google Scholar

  • [1] Zhang Ji,  Wei Yan-Fang,  Dong Li-Yun. Modeling and simulation on interaction between pedestrians and a vehicle in a channel. Acta Physica Sinica, 2018, 67(24): 240503. doi: 10.7498/aps.67.20181499
    [2] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [3] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [4] Sun Ze, Jia Bin, Li Xin-Gang. The study of the interference between pedestrians and vehicles based on cellular automaton model. Acta Physica Sinica, 2012, 61(10): 100508. doi: 10.7498/aps.61.100508
    [5] Hua Xue-Dong, Wang Wei, Wang Hao. A two-lane cellular automaton traffic flow model with the influence of driving psychology. Acta Physica Sinica, 2011, 60(8): 084502. doi: 10.7498/aps.60.084502
    [6] Song Yu-Rong, Jiang Guo-Ping, Xu Jia-Gang. An epidemic spreading model in adaptive networks based on cellular automata. Acta Physica Sinica, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [7] Zheng Liang, Ma Shou-Feng, Jia Ning. The cellular automaton model of traffic flow based on the driving behavior. Acta Physica Sinica, 2010, 59(7): 4490-4498. doi: 10.7498/aps.59.4490
    [8] Sheng Peng, Zhao Shu-Long, Wang Jun-Feng, Zuo Hang. Study of temporary traffic bottleneck based on cellular automaton model. Acta Physica Sinica, 2010, 59(6): 3831-3840. doi: 10.7498/aps.59.3831
    [9] Xue Yu, Wen Jian, Tian Huan-Huan, Kan San-Jun. Study on the energy consumption of cellular automaton FI model for mixed traffic flow. Acta Physica Sinica, 2010, 59(11): 7693-7700. doi: 10.7498/aps.59.7693
    [10] Kang Rui, Peng Li-Juan, Yang Kai. One-dimensional traffic cellular automaton model with consideration of the change of driving rules. Acta Physica Sinica, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [11] Tian Huan-Huan, Xue Yu, Kang San-Jun, Liang Yu-Juan. Study on the energy consumption using the cellular automaton mixed traffic model. Acta Physica Sinica, 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [12] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. Modeling urban expressway systems with ramps and accessory roads by cellular automaton model. Acta Physica Sinica, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [13] Peng Li-Juan, Kang Rui. One-dimensional cellular automaton model of traffic flow considering drivers’ features. Acta Physica Sinica, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [14] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [15] Li Qing-Ding, Dong Li-Yun, Dai Shi-Qiang. Investigation on traffic bottleneck induce by bus stopping with a two-lane cellular automaton model. Acta Physica Sinica, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [16] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [17] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
Metrics
  • Abstract views:  8133
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2019
  • Accepted Date:  21 October 2019
  • Available Online:  27 November 2019
  • Published Online:  01 December 2019

/

返回文章
返回