-
In recent years, the property of nonequilibrium thermodynamics in closed system, especially in spin chain system undergoing a quenching process, has become one of the hot topics in the quantum thermodynamics. The nonequilibrium thermodynamic properties of XY spin chain with XZX + YZY type of three-site interaction under a transverse field are studied by considering an exactly solvable model. First we review some basic concepts, i.e., the work distribution, the averaged work, the fluctuation of work, and the irreversible entropy in the nonequilibrium thermodynamics, and give the theoretical model and its solutions. Then, we concretely discuss the effects of the three-site interaction of XZX + YZY type on the average work, the fluctuation of work and the irreversible entropy in the extended XY chain undergoing a quench process. The theoretical calculation and numerical simulation show that the three-site interaction of XZX + YZY type may play a positive and negative role in the increase of the averaged work, which depends on the strength of initial external magnetic field. Moreover, we also find that work fluctuation can be effectively suppressed by adjusting the intensity of XZX + YZY three-site interaction. Finally, it is found that the irreversible entropy production presents a sharp peak characteristic near the critical magnetic field, and the value of the peak sharp decreases with the increase of XZX + YZY three-site interaction. Simultaneously, the corresponding physical explanations are also given. In a word, the results given in present paper may increasingly arouse one’s interest in the nonequilibrium quantum thermodynamics.
-
Keywords:
- XY spin chain with multisite interaction /
- averaged work /
- fluctuation of work /
- irreversible entropy production
[1] Greiner M, Mandel O, Hansch T W, Bloch I 2002 Nature 419 51Google Scholar
[2] Kinoshita T, Wenger T, Weiss D S 2006 Nature 440 900Google Scholar
[3] Bloch I, Dalibard J, Wenger W 2008 Rev. Mod. Phys. 80 885Google Scholar
[4] Jarzynski C 1997 Phys. Rev. Lett. 78 2690Google Scholar
[5] Crooks G E 1999 Phys. Rev. E 60 2721Google Scholar
[6] Talkner P, Hanggi P 2007 J. Phys. A 40 F569Google Scholar
[7] Talkner P, Lutz E, Hanggi P 2007 Phys. Rev. E 75 050102(R)Google Scholar
[8] Esposito M, Harbola U, Mukamel S 2009 Rev. Mod. Phys. 81 1665Google Scholar
[9] Sagawa T, Ueda M 2010 Phys. Rev. Lett. 104 090602Google Scholar
[10] Campisi M, Hanggi P, Talkner P 2011 Rev. Mod. Phys. 83 771Google Scholar
[11] Seifert U 2012 Rep. Prog. Phys. 75 126001Google Scholar
[12] Huber G, Kaler F S, Deffner S, Lutz E 2008 Phys. Rev. Lett. 101 070403Google Scholar
[13] Dorner R, Clark S R, Heaney L, Fazio R, Goold J, Vedral V 2013 Phys. Rev. Lett. 110 230601Google Scholar
[14] Mazzola L, De Chiara G, Paternostro M 2013 Phys. Rev. Lett. 110 230602Google Scholar
[15] An S, Zhang J N, Um M, Lv D, Lu Y, Zhang J, Yin Z Q, Quan H T 2015 Nat. Phys. 11 193Google Scholar
[16] Xiong T P, Yan L L, Zhou F, Rehan K, Liang D F, Chen L, Yang W L, Ma Z H, Feng M, Vedral V 2018 Phys. Rev. Lett. 120 010601Google Scholar
[17] Silva A 2008 Phys. Rev. Lett. 101 120603Google Scholar
[18] Dorner R, Goold J, Cormick C, Paternostro M, Vedral V 2012 Phys. Rev. Lett. 109 160601Google Scholar
[19] Bayocboc F A, Paraan F N C 2015 Phys. Rev. E 92 032142Google Scholar
[20] Zhong M, Tong P Q 2015 Phys. Rev. E 91 032137Google Scholar
[21] Wang Q, Cao D, Quan H T 2018 Phys. Rev. A 98 022107Google Scholar
[22] Xu B M, Zou J, Guo L S, Kong X M 2018 Phys. Rev. A 97 052122Google Scholar
[23] Roger M, Hetherington J H, Delrieu J M 1983 Rev. Mod. Phys. 55 1Google Scholar
[24] Titvinidze I, Japaridze G I 2003 Eur. Phys. J. B 32 383Google Scholar
[25] Cheng W W, J M Liu 2010 Phys. Rev. A 81 044304Google Scholar
[26] Cheng W W, J M Liu 2010 Phys. Rev. A 82 012308Google Scholar
[27] Lian H L 2011 Physica B 406 4278Google Scholar
[28] 单传家 2012 物理学报 61 220302Google Scholar
Shan C J 2012 Acta Phys. Sin. 61 220302Google Scholar
[29] 郗玉兴, 单传家, 黄燕霞 2014 物理学报 63 110305Google Scholar
Xi Y X, Shan C J, Huang Y X 2014 Acta Phys. Sin. 63 110305Google Scholar
[30] Deffner S, Lutz E 2010 Phys. Rev. Lett. 105 170402Google Scholar
[31] Donald M J 1987 J. Stat. Phys. 49 81Google Scholar
[32] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University) pp 61−64
[33] Zhang J, Shao B, Zou J, Li Q S 2011 Chin. Phys. B 20 100307Google Scholar
[34] Zhang A P, Li F L 2013 Chin. Phys. B 22 030308Google Scholar
[35] Quan H T, Song Z, Liu Y X, Zanardi P, Sun C P 2006 Phys. Rev. Lett. 96 140604Google Scholar
[36] Yuan Z G, Zhang P, Li S S 2007 Phys. Rev. A 75 012102Google Scholar
[37] Prosen T, Seligman T H, Znidaric M 2003 Prog. Theor. Phys. Suppl. 150 200Google Scholar
-
图 2 平均功
$\left\langle W \right\rangle$ 在不同的三格点相互作用强度$\alpha$ 和各向异性参数$\gamma $ 下随初始外磁场强度$\lambda _0$ 的变化 (a)$\gamma = 0.1$ ; (b)$\gamma = 0.8$ ; 其他的参数被设定为$\beta = 100$ ,$ \text {δ} \lambda = \lambda _\tau - \lambda _0 = 0.01$ ,$N = 5000$ Figure 2. Averaged work
$\left\langle W \right\rangle$ and work distribution fluctuation$\varSigma ^2$ as a function of$\lambda _0$ under various$\alpha$ for$\gamma = 0.1 $ (a) and$\gamma = 0.8$ (b). Other parameters are$\beta = 100$ ,$ \text{δ} \lambda = \lambda _\tau - \lambda _0 = 0.01$ and$N = 5000$ .图 3 功涨落
$\varSigma ^2$ 对于不同的三格点相互作用强度$\alpha$ 和各向异性参数$\gamma $ 随初始外磁场强度$\lambda _0$ 的变化 (a)$\gamma = 0.1$ ; (b)$\gamma = 0.8$ ; 其他的参数被设定为$\beta = 100$ ,$ \text{δ} \lambda = \lambda _\tau - \lambda _0 = 0.01$ ,$N = 5000$ Figure 3. Work fluctuation
$\varSigma ^2$ as a function of$\lambda _0$ under various$\alpha$ for$\gamma = 0.1$ (a) and$\gamma = 0.8$ (b). Other parameters are$\beta = 100,$ $ \text{δ} \lambda = \lambda _\tau - \lambda _0 = 0.01$ and$N = 5000$ .图 4 不可逆熵产生
$\Delta S_{{\rm{irr}}}$ 对于不同的三格点相互作用强度$\alpha$ 和各向异性参数$\gamma $ 随初始外磁场强度$\lambda _0$ 的变化 (a)$\gamma = 0.1$ ; (b)$\gamma = 0.8$ ; 其他的参数被设定为$\beta = 100$ ,$ {\text{δ}} \lambda = \lambda _\tau - \lambda _0 = 0.01$ ,$N = 5000$ Figure 4. Irreversible entropy production
$\Delta S_{{\rm{irr}}}$ as a function of$\lambda _0$ under various$\alpha$ for$\gamma = 0.1$ (a) and$\gamma = 0.8$ (b). Other parameters are$\beta = 100$ ,$ {\text{δ}} \lambda = \lambda _\tau - \lambda _0 = 0.01$ and$N = 5000$ . -
[1] Greiner M, Mandel O, Hansch T W, Bloch I 2002 Nature 419 51Google Scholar
[2] Kinoshita T, Wenger T, Weiss D S 2006 Nature 440 900Google Scholar
[3] Bloch I, Dalibard J, Wenger W 2008 Rev. Mod. Phys. 80 885Google Scholar
[4] Jarzynski C 1997 Phys. Rev. Lett. 78 2690Google Scholar
[5] Crooks G E 1999 Phys. Rev. E 60 2721Google Scholar
[6] Talkner P, Hanggi P 2007 J. Phys. A 40 F569Google Scholar
[7] Talkner P, Lutz E, Hanggi P 2007 Phys. Rev. E 75 050102(R)Google Scholar
[8] Esposito M, Harbola U, Mukamel S 2009 Rev. Mod. Phys. 81 1665Google Scholar
[9] Sagawa T, Ueda M 2010 Phys. Rev. Lett. 104 090602Google Scholar
[10] Campisi M, Hanggi P, Talkner P 2011 Rev. Mod. Phys. 83 771Google Scholar
[11] Seifert U 2012 Rep. Prog. Phys. 75 126001Google Scholar
[12] Huber G, Kaler F S, Deffner S, Lutz E 2008 Phys. Rev. Lett. 101 070403Google Scholar
[13] Dorner R, Clark S R, Heaney L, Fazio R, Goold J, Vedral V 2013 Phys. Rev. Lett. 110 230601Google Scholar
[14] Mazzola L, De Chiara G, Paternostro M 2013 Phys. Rev. Lett. 110 230602Google Scholar
[15] An S, Zhang J N, Um M, Lv D, Lu Y, Zhang J, Yin Z Q, Quan H T 2015 Nat. Phys. 11 193Google Scholar
[16] Xiong T P, Yan L L, Zhou F, Rehan K, Liang D F, Chen L, Yang W L, Ma Z H, Feng M, Vedral V 2018 Phys. Rev. Lett. 120 010601Google Scholar
[17] Silva A 2008 Phys. Rev. Lett. 101 120603Google Scholar
[18] Dorner R, Goold J, Cormick C, Paternostro M, Vedral V 2012 Phys. Rev. Lett. 109 160601Google Scholar
[19] Bayocboc F A, Paraan F N C 2015 Phys. Rev. E 92 032142Google Scholar
[20] Zhong M, Tong P Q 2015 Phys. Rev. E 91 032137Google Scholar
[21] Wang Q, Cao D, Quan H T 2018 Phys. Rev. A 98 022107Google Scholar
[22] Xu B M, Zou J, Guo L S, Kong X M 2018 Phys. Rev. A 97 052122Google Scholar
[23] Roger M, Hetherington J H, Delrieu J M 1983 Rev. Mod. Phys. 55 1Google Scholar
[24] Titvinidze I, Japaridze G I 2003 Eur. Phys. J. B 32 383Google Scholar
[25] Cheng W W, J M Liu 2010 Phys. Rev. A 81 044304Google Scholar
[26] Cheng W W, J M Liu 2010 Phys. Rev. A 82 012308Google Scholar
[27] Lian H L 2011 Physica B 406 4278Google Scholar
[28] 单传家 2012 物理学报 61 220302Google Scholar
Shan C J 2012 Acta Phys. Sin. 61 220302Google Scholar
[29] 郗玉兴, 单传家, 黄燕霞 2014 物理学报 63 110305Google Scholar
Xi Y X, Shan C J, Huang Y X 2014 Acta Phys. Sin. 63 110305Google Scholar
[30] Deffner S, Lutz E 2010 Phys. Rev. Lett. 105 170402Google Scholar
[31] Donald M J 1987 J. Stat. Phys. 49 81Google Scholar
[32] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University) pp 61−64
[33] Zhang J, Shao B, Zou J, Li Q S 2011 Chin. Phys. B 20 100307Google Scholar
[34] Zhang A P, Li F L 2013 Chin. Phys. B 22 030308Google Scholar
[35] Quan H T, Song Z, Liu Y X, Zanardi P, Sun C P 2006 Phys. Rev. Lett. 96 140604Google Scholar
[36] Yuan Z G, Zhang P, Li S S 2007 Phys. Rev. A 75 012102Google Scholar
[37] Prosen T, Seligman T H, Znidaric M 2003 Prog. Theor. Phys. Suppl. 150 200Google Scholar
Catalog
Metrics
- Abstract views: 7027
- PDF Downloads: 60
- Cited By: 0