搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共面波导型超导微波功分器: 设计、制备和测试

张博 贺青 杨欣达 欧阳鹏辉 王轶文 韦联福

引用本文:
Citation:

共面波导型超导微波功分器: 设计、制备和测试

张博, 贺青, 杨欣达, 欧阳鹏辉, 王轶文, 韦联福

Coplanar waveguide superconducting microwave power divider: Design, preparation and experimental tests

Zhang Bo, He Qing, Yang Xin-Da, Ouyang Peng-Hui, Wang Yi-Wen, Wei Lian-Fu
PDF
HTML
导出引用
  • 功分器是将信号按照一定比例进行功率分配的微波器件, 广泛应用于微波电路. 鉴于超导功分器是超导量子计算电路和超导微波光子探测器的重要器件单元, 本文首先采用奇偶模方法分析三端口微波网络传输特性以获取无隔离电阻功分器的参数, 其次通过商用电磁仿真软件HFSS设计了中心频率为5 GHz、功分比为等分的共面波导型超导微波功分器. 然后利用微加工技术在硅基上制备了该原型器件, 并在极低温平台对其功分特性进行了实验测试. 结果表明, 所制备的功分器在5—5.5 GHz频段内的功分参数与设计参数一致. 因此, 本文工作可推广应用于超导微波电路中其他无源器件的设计和制备.
    Power divider is a useful device that divides the power of signal into different subpowers at a certain ratio. The superconducting power divider plays an important role in various superconducting quantum computing circuits and superconducting microwave photon detectors. Therefore, in this paper we investigate how to design and prepare a typical coplanar waveguide superconducting microwave power divider. The parameters are designed by using the odd-even mode method to analyze the transport features of a three-port microwave network. Specifically, the microwave transport properties of the device with a center frequency of 5 GHz and 3 dB power division ratio are simulated. Then, the designed aluminum coplanar waveguide superconducting power divider on silicon is prepared by micro-processing technology and experimentally tested at low temperature. It is shown that the measurement results are consistent with the design parameters. It is noted that the center frequency of the actually prepared power divider is measured to be about 5.25 GHz, which is slightly different from the result of the design and simulation. This difference is probably due to the following main reasons. Firstly, the limited precision of the micromachining process is caused by the fact that the fabricated quarter-wave impedance matching line is etched incompletely, leading the length of the impedance matching line to be shortened. As a consequence, the frequency of the prepared power divider is slightly higher. Secondly, the simulation software is not designed specially for superconducting device simulations, thereby yielding the design parameters slightly different from those of the fabricated superconducting devices. Additionally, a series of attenuations has been used in the experimental test system of the superconducting microwave power dividers for reducing the various noises. This causes the input test signal to weaken, thus the reflected signal turns significantly small. Therefore, none of the S11 parameters of the device can be effectively measured. Finally, neither of S21 and S31 parameters measured in the experiment is the predicted –3 dB, which is mainly due to the imperfections in the welding between SMA connectors and high-frequency transmission lines, and the spot welding between high-frequency transmission lines and power divider samples, and also due to the discontinuities of the high-frequency transmission line and the power divider and so on. All these factors can yield the tested insertion loss of the device. Hopefully, the method in this work can be extended to designing and preparing other passive superconducting microwave devices.
      通信作者: 韦联福, lfwei@swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974290, 61871333)资助的项目
      Corresponding author: Wei Lian-Fu, lfwei@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974290, 61871333)
    [1]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [2]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 107 217401Google Scholar

    [3]

    Opremcak A, Pechenezhskiy I V, Howington C, Christensen B G, Beck M A, Leonard J E, Suttle J, Wilen C, Nesterov K N, Ribeill G J, Thorbeck T, Schlenker F, Vavilov M G, Plourde B L T, McDermott R 2018 Science 361 1239Google Scholar

    [4]

    Day P, Leduc H, Mazin B, Vayonakis A, Zmuidzinas J 2003 Nature 425 817Google Scholar

    [5]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Franco N, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [6]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Anthony D C, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [7]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Gong M, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Nvsen M, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [8]

    郑东宁 2021 物理学报 70 018502Google Scholar

    Zheng D L 2021 Acta Phys. Sin. 70 018502Google Scholar

    [9]

    Mazin B 2004 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [10]

    Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [11]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmay J, Austermann J E, Ullom J N, Gao J, Ullom J N 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [12]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [13]

    顾月, 官伯然 2019 微波学报 35 56Google Scholar

    Gu Y, Guan B R 2019 J. Microwaves 35 56Google Scholar

    [14]

    毛军发, 夏彬 2020 微波学报 36 7Google Scholar

    Mao J F, Xia B 2020 J. Microwaves 36 7Google Scholar

    [15]

    Deng P H, Dai L C 2012 IEEE Trans. Microw. Theory Techn. 60 1520Google Scholar

    [16]

    周品嘉, 王轶文, 韦联福 2014 物理学报 63 070701Google Scholar

    Zhou P J, Wang Y W, Wei L F 2014 Acta Phys. Sin. 63 070701Google Scholar

    [17]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 China Sci. Bull. 58 2413Google Scholar

    [18]

    Rainee N S 2001 Coplanar Waveguide Circuits, Components, and Systems (New York: Wiley) p2

    [19]

    Pozar D M 2012 Microwave Engineering (4th ED) (New York: Wiley) p329

    [20]

    Cha E, Wadefalk N, Nilsson P, Schleeh J, Moschetti G, Pourkabirian A, Tuzi S, Grahn J 2018 IEEE Trans. Microw. Theory Tech. 66 4860Google Scholar

    [21]

    李海杰 2013 硕士学位论文 (成都: 西南交通大学)

    Li H J 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese)

  • 图 1  共面波导结构[18]

    Fig. 1.  Coplanar waveguide structure[18].

    图 2  归一化参量的威尔金森功分器[19]

    Fig. 2.  Wilkinson power divider with the normalized parameters[19].

    图 3  微波功分器的设计图及其尺寸图

    Fig. 3.  Designed microwave power divider

    图 4  中心频率为5 GHz的微波功分器仿真结果

    Fig. 4.  Simulation results of the designed microwave power divider whose center frequency at 5 GHz.

    图 5  (a)用于连接的单端口高频传输线设计(单位: mm); (b)用于连接的两端口高频传输线设计(单位: mm)

    Fig. 5.  (a) Designed single-port high-frequency transmission line for connection (unit: mm); (b) the designed two-port high-frequency transmission line for connection (unit: mm).

    图 6  制备流程图

    Fig. 6.  Flow chart of microfabrication.

    图 7  超导微波功分器实物图, 器件尺寸为18 mm × 12 mm

    Fig. 7.  Fabricated superconducting microwave power divider. Its size is 18 mm × 12 mm.

    图 8  测量线路, 其中DUT (device under test)表示测试样品, Attenuator为衰减器, LNA为低温低噪声放大器, Amplifier为功率放大器, VNA为矢量网络分析仪, PC为计算机[20]

    Fig. 8.  Measuring system. Here, DUT (device under test) means the tested sample, Attenuator is used to attenuated the measurement signals, LNA is low-temperature low-noise amplifier, Amplifier is for power amplification, VNA is the vector network analyzer, and PC is the computer[20].

    图 9  超导微波功分器微波传输特性测量原始数据

    Fig. 9.  Measurement data of the superconducting microwave power divider.

    图 10  超导微波功分器的S21S31测试结果

    Fig. 10.  Measured S21 and S31 data of the superconducting microwave power divider.

    表 1  共面波导型微波功分器的参数设计值

    Table 1.  Parameters of the designed coplanar waveguide microwave power divider.

    特征
    阻抗/$\Omega $
    椭圆积分
    模数k
    中心导体
    宽度S/μm
    中心导体与接地
    距离W/μm
    $ 50 $ $ 0.458 $ $ 23 $ $ 13.5 $
    $ 70.7 $ $ 0.2 $ $ 10 $ $ 20 $
    下载: 导出CSV

    表 2  4—8 GHz射频信号测量系统指标分析

    Table 2.  Index analysis of the 4—8 GHz RF signal measurement system.

    射频器件名称与指标 NF/dB Gain/dB
    低温同轴固定衰减器1 $ < 1 $ $ -20 $
    低温同轴固定衰减器2 $ < 1 $ $ -20 $
    低温低噪声放大器 $ 0.03 $ $ 39 $
    功率放大器1 $ 3 $ $ 26 $
    微波线缆与隔离器 $ 4 $ $ -4 $
    合计 $ 18.5 $ $ 21 $
    下载: 导出CSV
  • [1]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [2]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 107 217401Google Scholar

    [3]

    Opremcak A, Pechenezhskiy I V, Howington C, Christensen B G, Beck M A, Leonard J E, Suttle J, Wilen C, Nesterov K N, Ribeill G J, Thorbeck T, Schlenker F, Vavilov M G, Plourde B L T, McDermott R 2018 Science 361 1239Google Scholar

    [4]

    Day P, Leduc H, Mazin B, Vayonakis A, Zmuidzinas J 2003 Nature 425 817Google Scholar

    [5]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Franco N, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [6]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Anthony D C, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [7]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Gong M, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Nvsen M, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [8]

    郑东宁 2021 物理学报 70 018502Google Scholar

    Zheng D L 2021 Acta Phys. Sin. 70 018502Google Scholar

    [9]

    Mazin B 2004 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [10]

    Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [11]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmay J, Austermann J E, Ullom J N, Gao J, Ullom J N 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [12]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [13]

    顾月, 官伯然 2019 微波学报 35 56Google Scholar

    Gu Y, Guan B R 2019 J. Microwaves 35 56Google Scholar

    [14]

    毛军发, 夏彬 2020 微波学报 36 7Google Scholar

    Mao J F, Xia B 2020 J. Microwaves 36 7Google Scholar

    [15]

    Deng P H, Dai L C 2012 IEEE Trans. Microw. Theory Techn. 60 1520Google Scholar

    [16]

    周品嘉, 王轶文, 韦联福 2014 物理学报 63 070701Google Scholar

    Zhou P J, Wang Y W, Wei L F 2014 Acta Phys. Sin. 63 070701Google Scholar

    [17]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 China Sci. Bull. 58 2413Google Scholar

    [18]

    Rainee N S 2001 Coplanar Waveguide Circuits, Components, and Systems (New York: Wiley) p2

    [19]

    Pozar D M 2012 Microwave Engineering (4th ED) (New York: Wiley) p329

    [20]

    Cha E, Wadefalk N, Nilsson P, Schleeh J, Moschetti G, Pourkabirian A, Tuzi S, Grahn J 2018 IEEE Trans. Microw. Theory Tech. 66 4860Google Scholar

    [21]

    李海杰 2013 硕士学位论文 (成都: 西南交通大学)

    Li H J 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese)

  • [1] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [2] 肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋. 聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁. 物理学报, 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [3] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明. 物理学报, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [4] 郭金坤, 赵泽佳, 凌进中, 袁影, 王晓蕊. 软物质激光微纳加工技术. 物理学报, 2022, 71(17): 174203. doi: 10.7498/aps.71.20220625
    [5] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量. 物理学报, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [6] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [7] 李志全, 白兰迪, 顾而丹, 谢锐杰, 刘同磊, 牛力勇, 冯丹丹, 岳中. 一种基于金刚石多层波导结构微环谐振器的仿真分析. 物理学报, 2017, 66(20): 204203. doi: 10.7498/aps.66.204203
    [8] 林圆圆, 姜有恩, 韦辉, 范薇, 李学春. 基于飞秒激光微加工的介质膜损伤修复研究. 物理学报, 2015, 64(15): 154207. doi: 10.7498/aps.64.154207
    [9] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [10] 胡兴雷, 孙雅洲, 梁迎春, 陈家轩. 单晶硅微纳构件加工表面性能的时变性研究. 物理学报, 2013, 62(22): 220704. doi: 10.7498/aps.62.220704
    [11] 胡晓堃, 李江, 李贤, 陈耘辉, 栗岩锋, 柴路, 王清月. 太赫兹波发射晶体的亚波长微棱锥增透结构的设计与实验研究. 物理学报, 2013, 62(6): 060701. doi: 10.7498/aps.62.060701
    [12] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [13] 李杰, 朱京平. 光波导短程透镜加工容限误差研究. 物理学报, 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [14] 周长柱, 王晨, 李志远. 硅基二维平板光子晶体高Q微腔的制作和光谱测量. 物理学报, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [15] 庄须叶, 刘永顺, 王淑荣, 吴一辉, 张平. 基于微加工工艺的光纤消逝场传感器及其长度特性研究. 物理学报, 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
    [16] 邬云文, 海文华. Paul阱中共面两离子系统的能量本征态. 物理学报, 2006, 55(7): 3315-3321. doi: 10.7498/aps.55.3315
    [17] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [18] 纪宪明, 印建平. 一种新颖的表面光波导型原子(或分子)分束器. 物理学报, 2005, 54(10): 4659-4665. doi: 10.7498/aps.54.4659
    [19] 孟继宝, 陈兆甲, 雒建林, 白海洋, 汪卫华, 郑萍, 张杰, 苏少奎, 王玉鹏. 重费密子系统CeCu6-xNix的极低温电阻研究. 物理学报, 2001, 50(8): 1632-1636. doi: 10.7498/aps.50.1632
    [20] 赵毓玲, 张国华, 杨大宇, 王文魁. 冷加工、预脱溶对铌钛合金超导临界特性的影响. 物理学报, 1974, 23(1): 77-80. doi: 10.7498/aps.23.77
计量
  • 文章访问数:  6001
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 修回日期:  2021-03-21
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回