Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coplanar waveguide superconducting microwave power divider: Design, preparation and experimental tests

Zhang Bo He Qing Yang Xin-Da Ouyang Peng-Hui Wang Yi-Wen Wei Lian-Fu

Citation:

Coplanar waveguide superconducting microwave power divider: Design, preparation and experimental tests

Zhang Bo, He Qing, Yang Xin-Da, Ouyang Peng-Hui, Wang Yi-Wen, Wei Lian-Fu
PDF
HTML
Get Citation
  • Power divider is a useful device that divides the power of signal into different subpowers at a certain ratio. The superconducting power divider plays an important role in various superconducting quantum computing circuits and superconducting microwave photon detectors. Therefore, in this paper we investigate how to design and prepare a typical coplanar waveguide superconducting microwave power divider. The parameters are designed by using the odd-even mode method to analyze the transport features of a three-port microwave network. Specifically, the microwave transport properties of the device with a center frequency of 5 GHz and 3 dB power division ratio are simulated. Then, the designed aluminum coplanar waveguide superconducting power divider on silicon is prepared by micro-processing technology and experimentally tested at low temperature. It is shown that the measurement results are consistent with the design parameters. It is noted that the center frequency of the actually prepared power divider is measured to be about 5.25 GHz, which is slightly different from the result of the design and simulation. This difference is probably due to the following main reasons. Firstly, the limited precision of the micromachining process is caused by the fact that the fabricated quarter-wave impedance matching line is etched incompletely, leading the length of the impedance matching line to be shortened. As a consequence, the frequency of the prepared power divider is slightly higher. Secondly, the simulation software is not designed specially for superconducting device simulations, thereby yielding the design parameters slightly different from those of the fabricated superconducting devices. Additionally, a series of attenuations has been used in the experimental test system of the superconducting microwave power dividers for reducing the various noises. This causes the input test signal to weaken, thus the reflected signal turns significantly small. Therefore, none of the S11 parameters of the device can be effectively measured. Finally, neither of S21 and S31 parameters measured in the experiment is the predicted –3 dB, which is mainly due to the imperfections in the welding between SMA connectors and high-frequency transmission lines, and the spot welding between high-frequency transmission lines and power divider samples, and also due to the discontinuities of the high-frequency transmission line and the power divider and so on. All these factors can yield the tested insertion loss of the device. Hopefully, the method in this work can be extended to designing and preparing other passive superconducting microwave devices.
      Corresponding author: Wei Lian-Fu, lfwei@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974290, 61871333)
    [1]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [2]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 107 217401Google Scholar

    [3]

    Opremcak A, Pechenezhskiy I V, Howington C, Christensen B G, Beck M A, Leonard J E, Suttle J, Wilen C, Nesterov K N, Ribeill G J, Thorbeck T, Schlenker F, Vavilov M G, Plourde B L T, McDermott R 2018 Science 361 1239Google Scholar

    [4]

    Day P, Leduc H, Mazin B, Vayonakis A, Zmuidzinas J 2003 Nature 425 817Google Scholar

    [5]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Franco N, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [6]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Anthony D C, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [7]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Gong M, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Nvsen M, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [8]

    郑东宁 2021 物理学报 70 018502Google Scholar

    Zheng D L 2021 Acta Phys. Sin. 70 018502Google Scholar

    [9]

    Mazin B 2004 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [10]

    Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [11]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmay J, Austermann J E, Ullom J N, Gao J, Ullom J N 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [12]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [13]

    顾月, 官伯然 2019 微波学报 35 56Google Scholar

    Gu Y, Guan B R 2019 J. Microwaves 35 56Google Scholar

    [14]

    毛军发, 夏彬 2020 微波学报 36 7Google Scholar

    Mao J F, Xia B 2020 J. Microwaves 36 7Google Scholar

    [15]

    Deng P H, Dai L C 2012 IEEE Trans. Microw. Theory Techn. 60 1520Google Scholar

    [16]

    周品嘉, 王轶文, 韦联福 2014 物理学报 63 070701Google Scholar

    Zhou P J, Wang Y W, Wei L F 2014 Acta Phys. Sin. 63 070701Google Scholar

    [17]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 China Sci. Bull. 58 2413Google Scholar

    [18]

    Rainee N S 2001 Coplanar Waveguide Circuits, Components, and Systems (New York: Wiley) p2

    [19]

    Pozar D M 2012 Microwave Engineering (4th ED) (New York: Wiley) p329

    [20]

    Cha E, Wadefalk N, Nilsson P, Schleeh J, Moschetti G, Pourkabirian A, Tuzi S, Grahn J 2018 IEEE Trans. Microw. Theory Tech. 66 4860Google Scholar

    [21]

    李海杰 2013 硕士学位论文 (成都: 西南交通大学)

    Li H J 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese)

  • 图 1  共面波导结构[18]

    Figure 1.  Coplanar waveguide structure[18].

    图 2  归一化参量的威尔金森功分器[19]

    Figure 2.  Wilkinson power divider with the normalized parameters[19].

    图 3  微波功分器的设计图及其尺寸图

    Figure 3.  Designed microwave power divider

    图 4  中心频率为5 GHz的微波功分器仿真结果

    Figure 4.  Simulation results of the designed microwave power divider whose center frequency at 5 GHz.

    图 5  (a)用于连接的单端口高频传输线设计(单位: mm); (b)用于连接的两端口高频传输线设计(单位: mm)

    Figure 5.  (a) Designed single-port high-frequency transmission line for connection (unit: mm); (b) the designed two-port high-frequency transmission line for connection (unit: mm).

    图 6  制备流程图

    Figure 6.  Flow chart of microfabrication.

    图 7  超导微波功分器实物图, 器件尺寸为18 mm × 12 mm

    Figure 7.  Fabricated superconducting microwave power divider. Its size is 18 mm × 12 mm.

    图 8  测量线路, 其中DUT (device under test)表示测试样品, Attenuator为衰减器, LNA为低温低噪声放大器, Amplifier为功率放大器, VNA为矢量网络分析仪, PC为计算机[20]

    Figure 8.  Measuring system. Here, DUT (device under test) means the tested sample, Attenuator is used to attenuated the measurement signals, LNA is low-temperature low-noise amplifier, Amplifier is for power amplification, VNA is the vector network analyzer, and PC is the computer[20].

    图 9  超导微波功分器微波传输特性测量原始数据

    Figure 9.  Measurement data of the superconducting microwave power divider.

    图 10  超导微波功分器的S21S31测试结果

    Figure 10.  Measured S21 and S31 data of the superconducting microwave power divider.

    表 1  共面波导型微波功分器的参数设计值

    Table 1.  Parameters of the designed coplanar waveguide microwave power divider.

    特征
    阻抗/$\Omega $
    椭圆积分
    模数k
    中心导体
    宽度S/μm
    中心导体与接地
    距离W/μm
    $ 50 $ $ 0.458 $ $ 23 $ $ 13.5 $
    $ 70.7 $ $ 0.2 $ $ 10 $ $ 20 $
    DownLoad: CSV

    表 2  4—8 GHz射频信号测量系统指标分析

    Table 2.  Index analysis of the 4—8 GHz RF signal measurement system.

    射频器件名称与指标 NF/dB Gain/dB
    低温同轴固定衰减器1 $ < 1 $ $ -20 $
    低温同轴固定衰减器2 $ < 1 $ $ -20 $
    低温低噪声放大器 $ 0.03 $ $ 39 $
    功率放大器1 $ 3 $ $ 26 $
    微波线缆与隔离器 $ 4 $ $ -4 $
    合计 $ 18.5 $ $ 21 $
    DownLoad: CSV
  • [1]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [2]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 107 217401Google Scholar

    [3]

    Opremcak A, Pechenezhskiy I V, Howington C, Christensen B G, Beck M A, Leonard J E, Suttle J, Wilen C, Nesterov K N, Ribeill G J, Thorbeck T, Schlenker F, Vavilov M G, Plourde B L T, McDermott R 2018 Science 361 1239Google Scholar

    [4]

    Day P, Leduc H, Mazin B, Vayonakis A, Zmuidzinas J 2003 Nature 425 817Google Scholar

    [5]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Franco N, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [6]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Anthony D C, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [7]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Gong M, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Nvsen M, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [8]

    郑东宁 2021 物理学报 70 018502Google Scholar

    Zheng D L 2021 Acta Phys. Sin. 70 018502Google Scholar

    [9]

    Mazin B 2004 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [10]

    Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [11]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmay J, Austermann J E, Ullom J N, Gao J, Ullom J N 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [12]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [13]

    顾月, 官伯然 2019 微波学报 35 56Google Scholar

    Gu Y, Guan B R 2019 J. Microwaves 35 56Google Scholar

    [14]

    毛军发, 夏彬 2020 微波学报 36 7Google Scholar

    Mao J F, Xia B 2020 J. Microwaves 36 7Google Scholar

    [15]

    Deng P H, Dai L C 2012 IEEE Trans. Microw. Theory Techn. 60 1520Google Scholar

    [16]

    周品嘉, 王轶文, 韦联福 2014 物理学报 63 070701Google Scholar

    Zhou P J, Wang Y W, Wei L F 2014 Acta Phys. Sin. 63 070701Google Scholar

    [17]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 China Sci. Bull. 58 2413Google Scholar

    [18]

    Rainee N S 2001 Coplanar Waveguide Circuits, Components, and Systems (New York: Wiley) p2

    [19]

    Pozar D M 2012 Microwave Engineering (4th ED) (New York: Wiley) p329

    [20]

    Cha E, Wadefalk N, Nilsson P, Schleeh J, Moschetti G, Pourkabirian A, Tuzi S, Grahn J 2018 IEEE Trans. Microw. Theory Tech. 66 4860Google Scholar

    [21]

    李海杰 2013 硕士学位论文 (成都: 西南交通大学)

    Li H J 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese)

  • [1] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [2] Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng. Optical and Hyperfine Spectroscopic Investigations on Europium Ions Doped in Yttrium Orthosilicate Waveguides Fabricated by Focused Ion Beam Milling. Acta Physica Sinica, 2024, 73(22): 1-9. doi: 10.7498/aps.73.20241070
    [3] Gao Hai-Yan, Yang Xin-Da, Zhou Bo, He Qing, Wei Lian-Fu. Coupling-induced microwave transmission transparency with quarter-wavelength superconducting resonators. Acta Physica Sinica, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [4] Guo Jin-Kun, Zhao Ze-Jia, Ling Jin-Zhong, Yuan Ying, Wang Xiao-Rui. Laser micro/nanomachining technology for soft matter. Acta Physica Sinica, 2022, 71(17): 174203. doi: 10.7498/aps.71.20220625
    [5] Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures. Acta Physica Sinica, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [6] Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai. Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides. Acta Physica Sinica, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [7] Li Zhi-Quan, Bai Lan-Di, Gu Er-Dan, Xie Rui-Jie, Liu Tong-Lei, Niu Li-Yong, Feng Dan-Dan, Yue Zhong. Simulation analysis of micro-ring resonator based on diamond multilayer waveguide structure. Acta Physica Sinica, 2017, 66(20): 204203. doi: 10.7498/aps.66.204203
    [8] Lin Yuan-Yuan, Jiang You-En, Wei Hui, Fan Wei, Li Xue-Chun. Study on damage mitigation for dielectric mirrors by using femtosecond laser micromachining. Acta Physica Sinica, 2015, 64(15): 154207. doi: 10.7498/aps.64.154207
    [9] Wang Wu-Song, Zhang Li-Wei, Ran Jia, Zhang Ye-Wen. Experimental studies of the surface plasmon polaritons waveguide filter in microwave band. Acta Physica Sinica, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [10] Hu Xing-Lei, Sun Ya-Zhou, Liang Ying-Chun, Chen Jia-Xuan. Performance evolution process of machined surface of monocrystalline silicon micro/nanostructures. Acta Physica Sinica, 2013, 62(22): 220704. doi: 10.7498/aps.62.220704
    [11] Hu Xiao-Kun, Li Jiang, Li Xian, Chen Yun-Hui, Li Yan-Feng, Chai Lu, Wang Qing-Yue. Theoretical design and experiment study of sub-wavelength antireflective micropyramid structures on THz emitters. Acta Physica Sinica, 2013, 62(6): 060701. doi: 10.7498/aps.62.060701
    [12] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [13] Li Jie, Zhu Jing-Ping. Fabrication tolerances in four analytical designs of geodesic lenses. Acta Physica Sinica, 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [14] Zhou Chang-Zhu, Wang Chen, Li Zhi-Yuan. Fabrication and spectra-measurement of high Q photonic crystal cavity on silicon slabs. Acta Physica Sinica, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [15] Zhuang Xu-Ye, Liu Yong-Shun, Wang Shu-Rong, Wu Yi-Hui, Zhang Ping. Research on the fiber-optic evanescent field sensor based on microfabvication and the effect of fiber length on its properties. Acta Physica Sinica, 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
    [16] Wu Yun-Wen, Hai Wen-Hua. Energy eigenstates of two ions in a two-dimensional paul trap. Acta Physica Sinica, 2006, 55(7): 3315-3321. doi: 10.7498/aps.55.3315
    [17] Xu Xing-Sheng, Xiong Zhi-Gang, Sun Zeng-Hui, Du Wei, Lu Lin, Chen Hong-Da, Jin Ai-Zi, Zhang Dao-Zhong. Optical properties of semiconductor quantum-well material using photonic crystal fabricated by micro-fabrication machine. Acta Physica Sinica, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [18] Ji Xian-Ming, Yin Jian-Ping. A novel beam-splitter for surface wave-guided atoms or molecules. Acta Physica Sinica, 2005, 54(10): 4659-4665. doi: 10.7498/aps.54.4659
    [19] MENG JI-BAO, CHEN ZHAO-JIA, LUO JIAN-LIN, BAI HAI-YANG, WANG WEI-HUA, ZHENG PING, ZHANG JIE, SU SHAO-KUI, WANG YU-PENG. STUDY OF THE ULTRA-LOW TEMPERATURE RESISTANCES OF HEAVY FERMION SYSTEM CeCu6-xNix. Acta Physica Sinica, 2001, 50(8): 1632-1636. doi: 10.7498/aps.50.1632
    [20] ZHAO YU-LIN, ZHANG GUO-HUA, YANG DA-YU, WANG WEN-KUI. THE INFLUENCE OF COLD-WORK AND HEAT TREATMENT ON THE SUPERCONDUCTING PROPERTIES OF THE Nb-Ti ALLOY. Acta Physica Sinica, 1974, 23(1): 77-80. doi: 10.7498/aps.23.77
Metrics
  • Abstract views:  5594
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2021
  • Accepted Date:  21 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回