Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of shear-thinning droplet impact on surfaces with different wettability

Shen Xue-Feng Cao Yu Wang Jun-Feng Liu Hai-Long

Citation:

Numerical simulation of shear-thinning droplet impact on surfaces with different wettability

Shen Xue-Feng, Cao Yu, Wang Jun-Feng, Liu Hai-Long
PDF
HTML
Get Citation
  • Controlling impact dynamics of droplets on solid surfaces is a significant problem in a variety of applications, such as inkjet printing, spray cooling and coating and so on. Most of fluids used in industries always contain various kinds of additives such as surfactants, polymers and particles. Therefore, these fluids exhibit non-Newtonian behaviors, for instance, yield-stress, viscoelastic, shear-thickening and shear-thinning. The impact dynamics of Newtonian droplets on solid surfaces has been extensively investigated. However, the number of researches about fluids with non-Newtonian properties is comparatively very small. In this work, we employ the finite element scheme coupled with level set method to simulate the impact process of droplets on solid surfaces. The numerical simulation models the presence of shear-thinning viscosity by using the truncated power-law rheological model. We first conduct a mesh convergence study and verify the numerical model. The simulation results are found to be in good agreement with experimental data in the literature. By performing extensive numerical simulations and varying the rheological parameters and surface wettabilities, the influences of these parameters on the impact dynamics are evaluated, and the dominant effects that govern the spreading and receding process are determined. The simulation results show that for the case of droplet impacting on surface with contact angle θ = 55°, the spreading is stronger with power-law index decreasing as evidenced by larger shape deformation and faster interface moving speed. As power-law index decreases, we expect the maximum dimensionless diameter to increase and the minimum dimensionless height to decrease during inertial spreading. For the case of droplet with lower power-law index (m = 0.85 and 0.80), which indicates lower viscous dissipation during impact, the dimensionless parameters have significant differences. After first receding, the impacting droplet is not balanced any more and it starts to spread again until its kinetic energy is completely damped by fluid viscous dissipation. For the case of droplet (m = 0.80) impacting on surface, the center breakage can be observed during droplet spreading, which results from the effect of strong shear-thinning property. When a shear-thinning droplet impacts on a surface with contact angle θ = 100°, the oscillation behavior can be observed and the oscillation amplitude increases as power law index decreases. Bouncing phenomenon can be observed when a droplet impacts on surface with contact angle θ = 160°, regardless of rheological property. Finally, we propose an empirical model to predict the maximum dimensionless diameter of shear-thinning droplet impacting on the surface with contact angle θ = 55° as a function of non-Newtonian Reynolds number Ren.
      Corresponding author: Liu Hai-Long, leo@ujs.edu.cn
    [1]

    Rioboo R, Tropea C, Marengo M 2001 Atomization Sprays 11 155

    [2]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [3]

    杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华 2019 物理学报 68 156101Google Scholar

    Yang Y J, Mei C X, Zhang X D, Wei Y J, Liu S H 2019 Acta Phys. Sin. 68 156101Google Scholar

    [4]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159Google Scholar

    [5]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365Google Scholar

    [6]

    Jung S, Hoath S D, Hutchings I M 2013 Microfluid. Nanofluidics 14 163Google Scholar

    [7]

    Huh H K, Jung S, Seo K W, Lee S J 2015 Microfluid. Nanofluidics 18 1221Google Scholar

    [8]

    Luu L H, Forterre Y 2009 J. Fluid Mech. 632 301Google Scholar

    [9]

    Saïdi A, Martin C, Magnin A 2010 J. Non-Newton. Fluid Mech. 165 596Google Scholar

    [10]

    Boyer F, Sandoval-Nava E, Snoeijer J H, Dijksman J F, Lohse D 2016 Phys. Rev. Fluids 1 013901Google Scholar

    [11]

    German G, Bertola V 2009 J. Phys. Condens. Matter 21 375111Google Scholar

    [12]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 38 140Google Scholar

    [13]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 37 37Google Scholar

    [14]

    Andrade R, Skurtys O, Osorio F 2015 J. Food Eng. 157 70Google Scholar

    [15]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [16]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Chin. J. Theor. Appl. Mech. 50 1024Google Scholar

    [17]

    Hou T Y, Lowengrub J S, Shelley M J 2001 J. Comput. Phys. 169 302Google Scholar

    [18]

    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J 2001 J. Comput. Phys. 169 708Google Scholar

    [19]

    Yue P, Feng J J, Liu C, Shen J 2004 J. Fluid Mech. 515 293Google Scholar

    [20]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201Google Scholar

    [21]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708Google Scholar

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320Google Scholar

    [23]

    Olsson E, Kreiss G 2005 J. Comput. Phys. 210 225Google Scholar

    [24]

    郑志伟, 李大树, 仇性启, 崔运静 2017 物理学报 66 014704Google Scholar

    Zheng Z W, Li D S, Qiu X Q, Cui Y J 2017 Acta Phys. Sin. 66 014704Google Scholar

    [25]

    李玉杰, 黄军杰, 肖旭斌 2018 物理学报 67 184701Google Scholar

    Li Y J, Huang J J, Xiao X B 2018 Acta Phys. Sin. 67 184701Google Scholar

    [26]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H J, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [27]

    韩丁丁, 刘浩然, 刘难生, 丁航 2018 中国科学: 物理学 力学 天文学 48 094705Google Scholar

    Han D D, Liu H R, Liu N S, Ding H 2018 Sci. Sin. Phys. Mech. Astron. 48 094705Google Scholar

    [28]

    Kim E, Baek J 2012 J. Non-Newton. Fluid Mech. 173–174 62

    [29]

    Wang Y, Do-Quang M, Amberg G 2017 J. Non-Newton. Fluid Mech. 243 38Google Scholar

    [30]

    Liu H L, Um M K, Hwang W R 2015 J. Non-Newton. Fluid Mech. 224 40Google Scholar

    [31]

    Bashir S, Rees J M, Zimmerman W B 2014 Int. J. Multiph. Flow 60 40Google Scholar

    [32]

    Chang Q, Zhang M, Bai F, Wu J, Xia Z, Jiao K, Du Q 2013 J. Non-Newton. Fluid Mech. 198 10Google Scholar

    [33]

    Lim C Y, Lam Y C 2014 Microfluid. Nanofluidics 17 131Google Scholar

    [34]

    Lindner A, Bonn D, Meunier J 2000 Phys. Fluids 12 256Google Scholar

    [35]

    Zhang Q, Qian T Z, Wang X P 2016 Phys. Fluids 28 022103Google Scholar

    [36]

    Zhang L, Ku T, Cheng X, Song Y, Zhang D 2018 Microfluid. Nanofluidics 22 47Google Scholar

    [37]

    Jones H 1971 J. Phys. Appl. Phys. 4 1657Google Scholar

    [38]

    Madejski J 1976 Int. J. Heat Mass Transf. 19 1009Google Scholar

    [39]

    Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [40]

    Scheller B L, Bousfield D W 1995 AIChE J. 41 1357Google Scholar

    [41]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

  • 图 1  数值模拟计算域设置

    Figure 1.  Computation domain for numerical simulation.

    图 2  计算域网格剖分

    Figure 2.  Grid generation of computation domain.

    图 3  本文数值模拟与Lim等[33]相场模拟的结果比较

    Figure 3.  Comparisons between simulation results in this work and phase-field simulation results[33].

    图 4  本文数值模拟与German等[11]的实验结果比较(左侧为实验结果, 右侧为模拟结果)

    Figure 4.  Comparisons between numerical simulation in this work and experiment results[11], the left half of each image is obtained from the experiment, while the right half is the snapshots from our simulation.

    图 5  液滴撞击壁面的网格收敛性验证

    Figure 5.  Mesh convergence study of droplet impact on solid surfaces

    图 6  不同幂律指数流体剪切黏度随剪切速率的变化

    Figure 6.  Variation of shear viscosity with shear rate at different power-law index.

    图 7  不同幂律指数时无量纲直径随无量纲时间的变化(We = 4.53)

    Figure 7.  Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53).

    图 8  不同幂律指数时无量纲高度随无量纲时间的变化(We = 4.53)

    Figure 8.  Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53).

    图 9  不同幂律指数时液滴撞击壁面过程 (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53

    Figure 9.  Process of droplet impact on surface at different power-law index: (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.

    图 10  不同幂律指数时无量纲直径随无量纲时间的变化(We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))

    Figure 10.  Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))

    图 11  不同幂律指数时无量纲高度随无量纲时间的变化(We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))

    Figure 11.  Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85)).

    图 12  不同幂律指数时液滴撞击壁面过程 (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53

    Figure 12.  Process of droplet impact on surface at different power-law index: (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.

    图 13  最大无量纲直径模型预测值与数值计算值对比

    Figure 13.  Comparison of $ D_{\max}^* $ between model prediction values and simulation data.

    表 1  数值模拟参数设置

    Table 1.  Symbols and constants in numerical simulation

    参数符号/单位数值
    重新初始化参数$\gamma /{\rm{m}} \cdot {{\rm{s}}^{ - 1}}$1
    界面厚度$\varepsilon /\text{μm}$$5 \times {10^{ - 2}}$
    气体密度${\rho _1}/{\rm{kg}} \cdot {{\rm{m}}^{ - {\rm{3}}}}$1.2
    气体黏度${\eta _1}{\rm{/Pa}} \cdot {\rm{s}}$$2 \times {10^{ - 5}}$
    液体密度${\rho _2}/{\rm{kg}} \cdot {{\rm{m}}^{ - {\rm{3}}}}$1000
    液体黏度${\eta _2}{\rm{/Pa}} \cdot {\rm{s}}$$8.9 \times {10^{ - 4}}$
    温度T/℃25
    液滴初始直径${D_0}/{\text{μ} m }$55
    液滴撞击速度uz$/{\rm{m}} \cdot {{\rm{s}}^{ - 1}}$2.45
    接触角$\theta /{(^ \circ })$55
    气液界面张力$\sigma /{\rm{mN}} \cdot {{\rm{m}}^{ - 1}}$72.8
    DownLoad: CSV

    表 2  最大无量纲直径预测模型

    Table 2.  Prediction models of maximum dimensionless factor.

    模型出处方程均方根误差
    Jones[37]$D_{\max }^* = {({\rm{4/3} }Re_{\rm{n} } ^{1/4})^{1/2} }$0.20
    Madejski[38]$D_{\max }^* = Re_{\rm{n} } ^{1/5}$0.31
    Pasandideh-Fard等[39]$D_{\max }^* = 0.5 Re_{\rm{n} } ^{1/4}$0.64
    Scheller和Bousfield[40]$D_{\max }^* = 0.61{(R{e_{\rm{n}}}W{e^{1{\rm{/}}2}}{\rm{)}}^{0.166}}$0.65
    Roisman[41]$D_{\max }^* = 0.87 Re_{\rm{n} } ^{1/5} - {\rm{0} }{\rm{.40} }Re_{\rm{n} }^{2/5}W{e^{ - 1/2} }$0.97
    Luu和Forterre[8]$D_{\max }^* = Re_{\rm{n} } ^{1/(2 m + 3)}$0.44
    Andrade等[14]$D_{\max }^* = 1.28 + 0.071 W{e^{1/4} }Re_{\rm{n} } ^{1/4}$0.43
    本文预测模型$D_{\max }^* = Re_{\rm{n} } ^{0.17} = {\left[ {\rho D_0^mV_0^{2 - m}/k} \right]^{0.17} }$0.06
    DownLoad: CSV
  • [1]

    Rioboo R, Tropea C, Marengo M 2001 Atomization Sprays 11 155

    [2]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [3]

    杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华 2019 物理学报 68 156101Google Scholar

    Yang Y J, Mei C X, Zhang X D, Wei Y J, Liu S H 2019 Acta Phys. Sin. 68 156101Google Scholar

    [4]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159Google Scholar

    [5]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365Google Scholar

    [6]

    Jung S, Hoath S D, Hutchings I M 2013 Microfluid. Nanofluidics 14 163Google Scholar

    [7]

    Huh H K, Jung S, Seo K W, Lee S J 2015 Microfluid. Nanofluidics 18 1221Google Scholar

    [8]

    Luu L H, Forterre Y 2009 J. Fluid Mech. 632 301Google Scholar

    [9]

    Saïdi A, Martin C, Magnin A 2010 J. Non-Newton. Fluid Mech. 165 596Google Scholar

    [10]

    Boyer F, Sandoval-Nava E, Snoeijer J H, Dijksman J F, Lohse D 2016 Phys. Rev. Fluids 1 013901Google Scholar

    [11]

    German G, Bertola V 2009 J. Phys. Condens. Matter 21 375111Google Scholar

    [12]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 38 140Google Scholar

    [13]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 37 37Google Scholar

    [14]

    Andrade R, Skurtys O, Osorio F 2015 J. Food Eng. 157 70Google Scholar

    [15]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [16]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Chin. J. Theor. Appl. Mech. 50 1024Google Scholar

    [17]

    Hou T Y, Lowengrub J S, Shelley M J 2001 J. Comput. Phys. 169 302Google Scholar

    [18]

    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J 2001 J. Comput. Phys. 169 708Google Scholar

    [19]

    Yue P, Feng J J, Liu C, Shen J 2004 J. Fluid Mech. 515 293Google Scholar

    [20]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201Google Scholar

    [21]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708Google Scholar

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320Google Scholar

    [23]

    Olsson E, Kreiss G 2005 J. Comput. Phys. 210 225Google Scholar

    [24]

    郑志伟, 李大树, 仇性启, 崔运静 2017 物理学报 66 014704Google Scholar

    Zheng Z W, Li D S, Qiu X Q, Cui Y J 2017 Acta Phys. Sin. 66 014704Google Scholar

    [25]

    李玉杰, 黄军杰, 肖旭斌 2018 物理学报 67 184701Google Scholar

    Li Y J, Huang J J, Xiao X B 2018 Acta Phys. Sin. 67 184701Google Scholar

    [26]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H J, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [27]

    韩丁丁, 刘浩然, 刘难生, 丁航 2018 中国科学: 物理学 力学 天文学 48 094705Google Scholar

    Han D D, Liu H R, Liu N S, Ding H 2018 Sci. Sin. Phys. Mech. Astron. 48 094705Google Scholar

    [28]

    Kim E, Baek J 2012 J. Non-Newton. Fluid Mech. 173–174 62

    [29]

    Wang Y, Do-Quang M, Amberg G 2017 J. Non-Newton. Fluid Mech. 243 38Google Scholar

    [30]

    Liu H L, Um M K, Hwang W R 2015 J. Non-Newton. Fluid Mech. 224 40Google Scholar

    [31]

    Bashir S, Rees J M, Zimmerman W B 2014 Int. J. Multiph. Flow 60 40Google Scholar

    [32]

    Chang Q, Zhang M, Bai F, Wu J, Xia Z, Jiao K, Du Q 2013 J. Non-Newton. Fluid Mech. 198 10Google Scholar

    [33]

    Lim C Y, Lam Y C 2014 Microfluid. Nanofluidics 17 131Google Scholar

    [34]

    Lindner A, Bonn D, Meunier J 2000 Phys. Fluids 12 256Google Scholar

    [35]

    Zhang Q, Qian T Z, Wang X P 2016 Phys. Fluids 28 022103Google Scholar

    [36]

    Zhang L, Ku T, Cheng X, Song Y, Zhang D 2018 Microfluid. Nanofluidics 22 47Google Scholar

    [37]

    Jones H 1971 J. Phys. Appl. Phys. 4 1657Google Scholar

    [38]

    Madejski J 1976 Int. J. Heat Mass Transf. 19 1009Google Scholar

    [39]

    Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [40]

    Scheller B L, Bousfield D W 1995 AIChE J. 41 1357Google Scholar

    [41]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

  • [1] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] Zheng Suo-Sheng, Huang Yao, Zou Kun, Peng Yi-Tian. Numerical simulation of flow pattern for non-Newtonian flow in agitated thin film evaporator. Acta Physica Sinica, 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [3] Numerical simulation of flow pattern for non-Newtonian flow in agitated thin film evaporator. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211921
    [4] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [5] Zhao Ke, She Yang-Zi, Jiang Yan-Long, Qin Jing, Zhang Zhen-Hao. Numerical study on phase change behavior of liquid nitrogen droplets impinging on solid surface. Acta Physica Sinica, 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [6] Rong Song, Shen Shi-Quan, Wang Tian-You, Che Zhi-Zhao. Bouncing-with-spray mode and residence time of droplet impact on heated surfaces. Acta Physica Sinica, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [7] Dai Qing, Xiang Nan, Cheng Jie, Ni Zhong-Hua. Viscoelastic focusing of microparticles in circular cross-sectional microchannels. Acta Physica Sinica, 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [8] Bai Ling, Li Da-Ming, Li Yan-Qing, Wang Zhi-Chao, Li Yang-Yang. Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. Acta Physica Sinica, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [9] Dai Jian-Feng, Fan Xue-Ping, Meng Bo, Liu Ji-Fei. A coupled level-set and volume-of-fluid simulation for splashing of single droplet impact on an inclined liquid film. Acta Physica Sinica, 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [10] Shen Sheng-Qiang, Zhang Jie-Shan, Liang Gang-Tao. Experimental study of heat transfer from droplet impact on a heated surface. Acta Physica Sinica, 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [11] Guo Ya-Li, Wei Lan, Shen Sheng-Qiang, Chen Gui-Ying. The flow and heat transfer characteristics of double droplets impacting on flat liquid film. Acta Physica Sinica, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [12] Liang Gang-Tao, Shen Sheng-Qiang, Guo Ya-Li, Chen Jue-Xian, Yu Huan, Li Yi-Qiao. Special phenomena of droplet impact on an inclined wetted surface with experimental observation. Acta Physica Sinica, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [13] Liang Gang-Tao, Guo Ya-Li, Shen Sheng-Qiang. Analysis of liquid sheet and jet flow mechanism after droplet impinging onto liquid film. Acta Physica Sinica, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [14] Xu Shao-Feng, Wang Jiu-Gen. Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels. Acta Physica Sinica, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [15] Liang Gang-Tao, Guo Ya-Li, Shen Sheng-Qiang. Observation and analysis of drop impact on wetted spherical surfaces with low velocity. Acta Physica Sinica, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [16] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [17] Ji Shi-Ming, Weng Xiao-Xing, Tan Da-Peng. Analytical method of softness abrasive two-phase flow field based on 2D model of LSM. Acta Physica Sinica, 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
    [18] Sun Hong-Xiang, Xu Bai-Qiang, Wang Ji-Jun, Xu Gui-Dong, Xu Chen-Guang, Wang Feng. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic materials. Acta Physica Sinica, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [19] Feng Yong-Ping, Cui Jun-Zhi, Deng Ming-Xiang. The two-scale finite element computation for thermoelastic problem in periodic perforated domain. Acta Physica Sinica, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [20] Guo Yong-Cun, Zeng Yi-Shan, Lu De-Tang. The non-Newtonian fluid mathematical model for strata static temperature forecast. Acta Physica Sinica, 2005, 54(2): 802-806. doi: 10.7498/aps.54.802
Metrics
  • Abstract views:  9866
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2019
  • Accepted Date:  31 December 2019
  • Published Online:  20 March 2020

/

返回文章
返回