x

留言板

 引用本文:
 Citation:

Analytical method of softness abrasive two-phase flow field based on 2D model of LSM

Ji Shi-Ming, Weng Xiao-Xing, Tan Da-Peng
PDF
• 摘要

两相流场特性分析是软性磨粒流精密加工方法的技术关键. 针对此问题, 利用水平集方法(LSM)结构拓扑变换原理, 建立了描述磨粒流在另一流体中运动变化的二维模型. 该模型中, 用LSM捕捉两相流之间的界面, 从而对两相流的运动情况和相关参数进行模拟仿真, 深入讨论了磨粒流加工机理. 研究表明: 以LSM原理建立的二维模型, 成功地仿真模拟了两相流相变过程; 利用k-湍流模型与Preston方程相结合的数值分析方法, 对流道内各区域的速度等流场特性进行讨论, 为软性磨粒流加工提供了前期基础性研究.

Abstract

To solve the precision machining problem in the structural surface mould manufacturing process, a new no-tool precision machining method based on softness abrasive flow machining (SAFM) is proposed. The key technology of SAFM is the characteristic analysis of two-phase flow. To solve this problem, a two-dimensional model of the two-phase flow is established by the topological structure transformation of level set method. This mechanics model is used to simulate the motion of the turbulent flow and work out the characteristic parameters of abrasive two-phase flow. The simulation results show that this model can preferably simulate the motion of the two-phase flow and calculate velocity and pressure with k- model and Preston equation. Therefore the feasibility of SAFM can be confirmed and a good reference can be provided for the further research.

作者及机构信息

1. 浙江工业大学特种装备制造与先进加工技术教育部重点实验室, 杭州 310014
• 基金项目: 国家自然科学基金(批准号: 50875242, 50905163) 和浙江省自然科学基金重点项目 (批准号: Z107517, Y1090836) 资助的课题.

Authors and contacts

1. Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Zhejiang University of Technology, Ministry of Education, Hangzhou 310014, China
• Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50875242, 50905163), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Z107517, Y1090836).

参考文献

 [1] Jain V K, Adsul S G 2000 Int. J. Machine Tools Manufact. 40 1003 [2] Ji S M, Zhang S C, Zhang X, Zheng S H 2007 China Patent 10067628. 3[P] [3] Osher S, Sethian J A 1988 J. Computat. Phys. 79 12 [4] Malladi R, Sethian J A, Vemuri B C 1995 IEEE Trans. 17 158 [5] Caselles V, Kimmel R, Sapiro G 1997 Int. J. Computer Vision 22 79 [6] Sussman E 1994 J. Computer Phys. 114 146 [7] Oka H, Ishii K 1999 J. Phys. Soc. Japan 68 82 [8] Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (Vol. 53) (Washington D C: Hemisphere Publishing Corporation) [9] Xu J 1998 Chin. J. Computer Phys. 15 349 [10] Cheng R J, Cheng YM2007 Acta Phys. Sin. 56 5569 (in Chinese) [程荣军, 程玉民 2007 物理学报 56 5569] [11] Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 物理学报 57 1] [12] Tang B, Li J F, Wang T S 2008 Acta Phys. Sin. 57 6722 (in Chinese) [汤波, 李俊峰, 王天舒 2008 物理学报 57 6722] [13] Wang F, He F 2006 Acta Phys. Sin. 55 1005 (in Chinese) [王飞, 何枫 2006 物理学报 55 1005] [14] Osher S, Fedkiw R 2001 J. Computat. Phys. 169 475 [15] Yang L X, Ge D B, Zhao Y H, Wang G, Yan S 2008 Acta Phys. Sin. 57 2936 (in Chinese) [杨利霞, 葛德彪, 赵跃华, 王刚, 阎述 2008 物理学报 57 2936] [16] Ji X L, Li X Q 2008 Acta Phys. Sin. 57 7674 (in Chinese) [季小玲, 李晓庆 2008 物理学报 57 7674] [17] Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季小玲 2009 物理学报 58 2435] [18] Tilly G P 1979 Treatise on Material Science and Technology (New York: Academic Press) p287

施引文献

•  [1] Jain V K, Adsul S G 2000 Int. J. Machine Tools Manufact. 40 1003 [2] Ji S M, Zhang S C, Zhang X, Zheng S H 2007 China Patent 10067628. 3[P] [3] Osher S, Sethian J A 1988 J. Computat. Phys. 79 12 [4] Malladi R, Sethian J A, Vemuri B C 1995 IEEE Trans. 17 158 [5] Caselles V, Kimmel R, Sapiro G 1997 Int. J. Computer Vision 22 79 [6] Sussman E 1994 J. Computer Phys. 114 146 [7] Oka H, Ishii K 1999 J. Phys. Soc. Japan 68 82 [8] Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (Vol. 53) (Washington D C: Hemisphere Publishing Corporation) [9] Xu J 1998 Chin. J. Computer Phys. 15 349 [10] Cheng R J, Cheng YM2007 Acta Phys. Sin. 56 5569 (in Chinese) [程荣军, 程玉民 2007 物理学报 56 5569] [11] Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 物理学报 57 1] [12] Tang B, Li J F, Wang T S 2008 Acta Phys. Sin. 57 6722 (in Chinese) [汤波, 李俊峰, 王天舒 2008 物理学报 57 6722] [13] Wang F, He F 2006 Acta Phys. Sin. 55 1005 (in Chinese) [王飞, 何枫 2006 物理学报 55 1005] [14] Osher S, Fedkiw R 2001 J. Computat. Phys. 169 475 [15] Yang L X, Ge D B, Zhao Y H, Wang G, Yan S 2008 Acta Phys. Sin. 57 2936 (in Chinese) [杨利霞, 葛德彪, 赵跃华, 王刚, 阎述 2008 物理学报 57 2936] [16] Ji X L, Li X Q 2008 Acta Phys. Sin. 57 7674 (in Chinese) [季小玲, 李晓庆 2008 物理学报 57 7674] [17] Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季小玲 2009 物理学报 58 2435] [18] Tilly G P 1979 Treatise on Material Science and Technology (New York: Academic Press) p287
•  [1] 季梦, 尤云祥, 韩盼盼, 邱小平, 马乔, 吴凯健. 亚临界区圆柱绕流相干结构壁面模化混合RANS/LES模型. 物理学报, 2024, 73(5): 054701. doi: 10.7498/aps.73.20231745 [2] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715 [3] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682 [4] 黄丽亚, 汤平川, 霍宥良, 郑义, 成谢锋. 基于加权K-阶传播数的节点重要性. 物理学报, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087 [5] 杨青林, 王立夫, 李欢, 余牧舟. 基于相对距离的复杂网络谱粗粒化方法. 物理学报, 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848 [6] 黄丽亚, 霍宥良, 王青, 成谢锋. 基于K-阶结构熵的网络异构性研究. 物理学报, 2019, 68(1): 018901. doi: 10.7498/aps.68.20181388 [7] 罗仕龙, 龚凯, 唐朝生, 周靖. 加权网络中基于冗余边过滤的k-核分解排序算法. 物理学报, 2017, 66(18): 188902. doi: 10.7498/aps.66.188902 [8] 周建, 贾贞, 李科赞. 复杂网络谱粗粒化方法的改进算法. 物理学报, 2017, 66(6): 060502. doi: 10.7498/aps.66.060502 [9] 范虹, 韦文瑾, 朱艳春. 基于二维集合经验模式分解的距离正则化水平集磁共振图像分割. 物理学报, 2016, 65(16): 168701. doi: 10.7498/aps.65.168701 [10] 范虹, 朱艳春, 王芳梅, 张旭梅. 多分辨率水平集算法的乳腺MR图像分割. 物理学报, 2014, 63(11): 118701. doi: 10.7498/aps.63.118701 [11] 任卓明, 刘建国, 邵凤, 胡兆龙, 郭强. 复杂网络中最小K-核节点的传播能力分析. 物理学报, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902 [12] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301 [13] 刘子龙, 陈锐, 廖宁放, 李在清, 王煜. 大幅提高视觉密度国家基准测量水平的方法研究. 物理学报, 2012, 61(23): 230601. doi: 10.7498/aps.61.230601 [14] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354 [15] 汪　洪, 娄　平, 庄永河. 用重整化群流方程方法求解t-J模型元激发能谱. 物理学报, 2004, 53(2): 577-581. doi: 10.7498/aps.53.577 [16] 杨杭生, 吴国涛, 张孝彬, 陈小华, 卢筱楠, 王淼, 王春生, 何丕模, 徐铸德, 李文铸. 机械球磨对石墨结构的影响. 物理学报, 2000, 49(3): 522-526. doi: 10.7498/aps.49.522 [17] 龙君彦. 协变谐振子的重子结构模型及其K—S变换求解. 物理学报, 1994, 43(5): 717-724. doi: 10.7498/aps.43.717 [18] 尹道乐, 章立源. 紧密堆积结构化合物的超导临界温度和导带的异质杂化. 物理学报, 1980, 29(6): 677-685. doi: 10.7498/aps.29.677 [19] 许伯威. K-π共振态. 物理学报, 1965, 21(1): 221-222. doi: 10.7498/aps.21.221 [20] 周龙骧, 陈庭金. 低能K-π散射. 物理学报, 1965, 21(1): 67-74. doi: 10.7498/aps.21.67
• 文章访问数:  6543
• PDF下载量:  536
• 被引次数: 0
出版历程
• 收稿日期:  2010-07-06
• 修回日期:  2011-03-25
• 刊出日期:  2012-01-05

/