搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维集合经验模式分解的距离正则化水平集磁共振图像分割

范虹 韦文瑾 朱艳春

引用本文:
Citation:

基于二维集合经验模式分解的距离正则化水平集磁共振图像分割

范虹, 韦文瑾, 朱艳春

Distance regularized level set evolution in magnetic resonance image segmention based on bi-dimensional ensemble empirical mode decomposition

Fan Hong, Wei Wen-Jin, Zhu Yan-Chun
PDF
导出引用
  • 针对现有磁共振(MR)图像分割算法大多直接在原图像上进行处理,分割效果受噪声影响较大的问题,本文引入二维集合经验模式分解(BEEMD)算法,提高距离正则化水平集(DRLSE)方法对MR图像的分割精度. 算法中首先使用 BEEMD将待分割MR图像分解为多个二维固有模式函数(BIMF),通过对各BIMF赋予不同加权系数重构待分割图像,从而增强分割目标;然后在DRLSE的边界指示函数中添加部分BIMF分量,恢复因高斯平滑被模糊的目标轮廓,并使用DRLSE方法对重构图像进行分割. 通过对仿真图像和临床MR图像分割验证,表明本文算法具有较高的分割精度和鲁棒性,能有效实现对临床MR图像的分割.
    Original image is directly processed by the existing image segmentation algorithms, which is easily affected by noise. A bi-dimensional ensemble empirical mode decomposition (BEEMD) method is introduced to improve the accuracy of MR image segmentation by distance regularized level set (DRLSE) method. The BEEMD method is the extension of one-dimensional noise assisted data analysis from ensemble empirical mode decomposition (EEMD). The key points of BEEMD are as follows. four-neighborhood optimization is used to find extermum; three-spline interpolation is used to obtain the envelope; amplitude standard of added white noise is restricted; a certain time of integration is used to avoid modality aliasing problem. The main steps of the proposed method are as follows. Firstly, the MR image is decomposed into a number of two-dimensional intrinsic mode functions (BIMF) by BEEMD method; different weighting coefficients are endued to BIMF for image reconstruction to enhance the segmentation target. Secondly, part of BIMF components are added into edge indicator function of DRLSE to recover the blurring boundary caused by Gauss smooth operation. Then DRLSE is used to segment the reconstructed MR image. High accuracy and robustness of proposed algorithm are obtained in both simulations and clinical MR images. However, compared with DRLSE, the proposed method is complex and time consuming because using BEEMD for preprocessing the segmentation image.
      通信作者: 范虹, fanhong@snnu.edu.cn
    • 基金项目: 陕西省自然科学基金(批准号:2014JM2-6115)、陕西省科学技术研究发展计划(批准号:2012K06-36)和国家自然科学基金(批准号:41271518)资助的课题.
      Corresponding author: Fan Hong, fanhong@snnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM2-6115), the Science and Technology Research and Development Program of Shaanxi Province, China (Grant No. 2012K06-36), and the National Natural Science Foundation of China (Grant No. 41271518).
    [1]

    Seiko K S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M 2007 Magn. Reson. Ned. Sci. 6 21

    [2]

    Tang X, Hong L M, Zu D L 2010 Chin. Phys. B 19 078702

    [3]

    Xu Y, Wang W T, Wang W M 2012 Chin. Phys. B 21 118704

    [4]

    Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 物理学报 62 088701]

    [5]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]

    [6]

    Osher S, Sethian J 1988 J. Comput. Phys. 79 12

    [7]

    Chan F T, Vese L 2001 IEEE T. Image Process. 10 266

    [8]

    Munford D, Shah J 1989 Commun. Pure. Appl. Math. 42 577

    [9]

    Li C M, Xu C Y, Gui C F, Fox M D 2010 IEEE T. Image Process. 19 3243

    [10]

    Liu J Q, Liu W W 2011 Procedia Engineering 15 2634

    [11]

    W Narkbuakaew, H Nagahashi, K Aoki, Y Kubota 2014 J. Biomed. Eng. 7 994

    [12]

    Nunes J C, Bouaoune Y, Delechelle E, Niang O, Bunel P 2003 Image Vision Comput. 21 1019

    [13]

    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen NC, Tung C C, Liu H H 1998 Proc. of the Royal Society of London A 454 903

    [14]

    Zheng Y Z, Qin Z 2009 J. Softw. 20 1096 (in Chinese) [郑有志, 覃征 2009 软件学报 20 1096]

    [15]

    Zhang B H, Zhang C T, Wu J S, Liu H 2014 J. Light Electron Opt. 125 146

    [16]

    Wu Z H, Huang N E 2009 Adv. Data Anal. 1 1

    [17]

    Al-Baddai S, Al-Subari K, Tome A M, Volberg G, Hanslmayr S, Hammwohner R, Lang E W 2014 Biomed. Signal Proces. 13 218

    [18]

    Neubauer A, Tome A M, Kodewitz A, Gorriz J M, Puntonet C G, Lang E W 2014 Adv. Data Anal. 06 1450004

    [19]

    Zhou Y, Li H 2011 Opt. Express 19 18207

    [20]

    Zhou Y, Li H 2013 Mech. Syst. Signal Pr. 35 369

    [21]

    Ye X F, Wang L, Wang T 2012 Comput. Eng. Appl. 48 24 (in Chinese) [叶秀芬, 王雷, 王天 2012 计算机工程与应用 48 24]

    [22]

    Shattuck D W, Sandor-Leahy S R, Schaper K A, Rottenberg D A, Leahy R M 2001 Neuroimage 13 856

    [23]

    Laine A, Fan J, Yang W 1995 IEEE Eng. Med. Biol. IEEE Eng. Med. Biol. 14 536

    [24]

    Qu J L, Wang X F, Gao F, Zhou Y P, Zhang X Y 2014 Acta Phys. Sin. 63 110201 (in Chinese) [曲建岭, 王小飞, 高峰, 周玉平, 张翔宇 2014 物理学报 63 110201]

  • [1]

    Seiko K S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M 2007 Magn. Reson. Ned. Sci. 6 21

    [2]

    Tang X, Hong L M, Zu D L 2010 Chin. Phys. B 19 078702

    [3]

    Xu Y, Wang W T, Wang W M 2012 Chin. Phys. B 21 118704

    [4]

    Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 物理学报 62 088701]

    [5]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]

    [6]

    Osher S, Sethian J 1988 J. Comput. Phys. 79 12

    [7]

    Chan F T, Vese L 2001 IEEE T. Image Process. 10 266

    [8]

    Munford D, Shah J 1989 Commun. Pure. Appl. Math. 42 577

    [9]

    Li C M, Xu C Y, Gui C F, Fox M D 2010 IEEE T. Image Process. 19 3243

    [10]

    Liu J Q, Liu W W 2011 Procedia Engineering 15 2634

    [11]

    W Narkbuakaew, H Nagahashi, K Aoki, Y Kubota 2014 J. Biomed. Eng. 7 994

    [12]

    Nunes J C, Bouaoune Y, Delechelle E, Niang O, Bunel P 2003 Image Vision Comput. 21 1019

    [13]

    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen NC, Tung C C, Liu H H 1998 Proc. of the Royal Society of London A 454 903

    [14]

    Zheng Y Z, Qin Z 2009 J. Softw. 20 1096 (in Chinese) [郑有志, 覃征 2009 软件学报 20 1096]

    [15]

    Zhang B H, Zhang C T, Wu J S, Liu H 2014 J. Light Electron Opt. 125 146

    [16]

    Wu Z H, Huang N E 2009 Adv. Data Anal. 1 1

    [17]

    Al-Baddai S, Al-Subari K, Tome A M, Volberg G, Hanslmayr S, Hammwohner R, Lang E W 2014 Biomed. Signal Proces. 13 218

    [18]

    Neubauer A, Tome A M, Kodewitz A, Gorriz J M, Puntonet C G, Lang E W 2014 Adv. Data Anal. 06 1450004

    [19]

    Zhou Y, Li H 2011 Opt. Express 19 18207

    [20]

    Zhou Y, Li H 2013 Mech. Syst. Signal Pr. 35 369

    [21]

    Ye X F, Wang L, Wang T 2012 Comput. Eng. Appl. 48 24 (in Chinese) [叶秀芬, 王雷, 王天 2012 计算机工程与应用 48 24]

    [22]

    Shattuck D W, Sandor-Leahy S R, Schaper K A, Rottenberg D A, Leahy R M 2001 Neuroimage 13 856

    [23]

    Laine A, Fan J, Yang W 1995 IEEE Eng. Med. Biol. IEEE Eng. Med. Biol. 14 536

    [24]

    Qu J L, Wang X F, Gao F, Zhou Y P, Zhang X Y 2014 Acta Phys. Sin. 63 110201 (in Chinese) [曲建岭, 王小飞, 高峰, 周玉平, 张翔宇 2014 物理学报 63 110201]

  • [1] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法. 物理学报, 2022, 71(5): 058701. doi: 10.7498/aps.71.20211761
    [2] 牛晓东, 卢莉蓉, 王鉴, 韩星程, 郭树言, 王黎明. 基于改进经验模态分解域内心动物理特征识别模式分量的心电信号重建. 物理学报, 2021, 70(3): 038702. doi: 10.7498/aps.70.20201122
    [3] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211761
    [4] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式. 物理学报, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [5] 任金莲, 任恒飞, 陆伟刚, 蒋涛. 基于分裂格式有限点集法对孤立波二维非线性问题的模拟. 物理学报, 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [6] 黄清明, 陈珊珊, 张建青, 杨洋, 郑刚. 基于目标场点法和流函数的磁共振有源匀场线圈设计方法. 物理学报, 2019, 68(19): 198301. doi: 10.7498/aps.68.20190612
    [7] 范宜仁, 吴飞, 李虎, 霍宁宁, 王要森, 邓少贵, 杨培强. D-T2二维核磁共振脉冲序列及反演方法改进设计. 物理学报, 2015, 64(9): 099301. doi: 10.7498/aps.64.099301
    [8] 李彰明, 曾文秀, 高美连. 不同荷载水平及速率下超软土水相核磁共振试验研究. 物理学报, 2014, 63(1): 018202. doi: 10.7498/aps.63.018202
    [9] 王同标, 刘念华, 于天宝, 徐旭明, 廖清华. 含有凹口的金属纳米环形共振器的本征模式分裂. 物理学报, 2014, 63(1): 017301. doi: 10.7498/aps.63.017301
    [10] 范虹, 朱艳春, 王芳梅, 张旭梅. 多分辨率水平集算法的乳腺MR图像分割. 物理学报, 2014, 63(11): 118701. doi: 10.7498/aps.63.118701
    [11] 谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振. 物理学报, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [12] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法二维模型的软性磨粒两相流流场特性分析方法. 物理学报, 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
    [13] 刘圣, 张鹏, 肖发俊, 甘雪涛, 赵建林. 基于布里渊区谱的二维光子晶格线性缺陷模式分析. 物理学报, 2009, 58(8): 5467-5472. doi: 10.7498/aps.58.5467
    [14] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [15] 刘劲松, 刘 海, 王 春, 吕健滔, 樊 婷, 王晓东. 二维随机激光器的模式选择及阈值与饱和特性. 物理学报, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [16] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [17] 李鸿光, 孟 光. 基于经验模式分解的混沌干扰下谐波信号的提取方法. 物理学报, 2004, 53(7): 2069-2073. doi: 10.7498/aps.53.2069
    [18] 郭建新, 毛希安. 辐射阻尼引起二维核磁共振NOESY谱中的伪信号. 物理学报, 1996, 45(11): 1793-1799. doi: 10.7498/aps.45.1793
    [19] 姚胜根, 陈钧, 黄永仁. 核磁共振一维同类核相关编辑. 物理学报, 1988, 37(2): 229-238. doi: 10.7498/aps.37.229
    [20] 许政一, 霍裕平. 二价铁对铁磁共振线宽的影响. 物理学报, 1965, 21(3): 591-607. doi: 10.7498/aps.21.591
计量
  • 文章访问数:  5012
  • PDF下载量:  528
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-01
  • 修回日期:  2016-04-27
  • 刊出日期:  2016-08-05

/

返回文章
返回