搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氮滴撞击壁面相变行为的数值研究

赵可 佘阳梓 蒋彦龙 秦静 张振豪

引用本文:
Citation:

液氮滴撞击壁面相变行为的数值研究

赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪

Numerical study on phase change behavior of liquid nitrogen droplets impinging on solid surface

Zhao Ke, She Yang-Zi, Jiang Yan-Long, Qin Jing, Zhang Zhen-Hao
PDF
HTML
导出引用
  • 采用Level Set-VOF方法建立单液氮滴撞击壁面的数值模型, 探索壁面润湿性(30°—150°)、撞击速度(0.1和1.6 m/s)及壁面温度(300—500 K)对液滴撞壁演化过程中相变行为的影响, 并理论推导了气膜生长数学模型. 结果表明: 增强壁面润湿性、提高撞击速度有利于液滴沿径向铺展, 从而增大了换热面积并降低热阻, 使换热性能得到显著提升; 提高壁面温度增大了换热温差, 热流密度随之上升; 三相接触线处热阻较小导致边缘处热流密度高于中心处, 不同润湿壁面上热流分布的差异性因初始速度的增大而缩小, 呈现明显的速度效应; 在膜沸腾区, 传热过程主要集中在撞击初期, 气膜是主要换热热阻; 基于质量守恒和能量守恒建立气膜生长数值模型, 模型预测结果与本文模拟结果和其他研究结果非常吻合.
    The distinct physical properties of liquid nitrogen make liquid nitrogen spray cooling a promising technique in aerospace engineering, the electronic industry, superconductor cooling, cryobiology, etc. In-depth study of the dynamics and thermodynamic behavior of liquid nitrogen droplets impinging on the wall surface is helpful to understand the heat transfer mechanism of spray cooling technology with liquid nitrogen. Therefore, the mathematical model of single-liquid nitrogen droplet impacted solid surface is developed by Level Set-VOF method. The effects of wall wettability (30°-150°), initial velocity (0.1, 1.6 m/s) and wall temperature (300-500 K) on the phase change behavior during the evolution of droplets are investigated, and the mathematical model of film thickness is established. The results show that enhancing the wall wettability and increasing the impact speed facilitate the spreading of the droplets in the radial direction, thereby increasing the heat exchange area and reducing the thermal resistance. Ultimately, the heat exchange performance is significantly improved. Increasing the wall temperature results in an increase in the difference between temperatures of the solid surface and the liquid, thereby significantly increasing the wall heat flux density. The lower thermal resistance at the three-phase contact line results in a higher heat flux density at the edge than in the center; the difference among the heat flux distributions on different wetted walls decreases due to the increase of initial velocity, showing a significant velocity effect. In the film boiling region, the heat transfer process is mainly concentrated in the initial stage of impact, and the gas film is the main heat transfer resistance. Based on conservation of mass and energy, a numerical model of film thickness is developed in this paper. The model predictions are in good agreement with the simulation results of this paper and others.
      通信作者: 蒋彦龙, jiang-yanlong@nuaa.edu.cn
    • 基金项目: 航天低温推进剂技术国家重点实验室基础研究基金(SKLTSCP1811)、飞行器环境控制与生命保障工业和信息化部重点实验室(KLAECLS-E-201902)和江苏高校优势学科建设工程项目资助的课题
      Corresponding author: Jiang Yan-Long, jiang-yanlong@nuaa.edu.cn
    • Funds: Project supported by Research fund of State Key Laboratory of Technologies in Space Cryogenic Propellants, China (Grant No. SKLTSCP1811), the Research Fund of Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, China (Grant No. KLAECLS-E-201902), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
    [1]

    Liang G T, Mudawar I 2017 Int. J. Heat Mass. Tran. 115 1174Google Scholar

    [2]

    Liang G T, Mudawar I 2017 Int. J. Heat Mass. Tran. 115 1206Google Scholar

    [3]

    Somasundaram S, Tay A A O 2014 Appl. Therm. Eng. 69 199Google Scholar

    [4]

    Liu X F, Xue R, Ruan Y X, Chen L, Zhang X Q, Hou Y 2017 Cryogenics 83 57Google Scholar

    [5]

    Xue R, Ruan Y X, Liu X F, Chen L, Zhang X Q, Hou Y, Chen S T 2018 Appl. Therm. Eng. 142 717Google Scholar

    [6]

    Kilgore R A, Dress D A 1984 Cryogenics 24 395Google Scholar

    [7]

    Tran T, Staat H J J, Susarrey-Arce A, Foertsch T C, van Houselt A, Gardeniers H J G E, Prosperetti A, Lohse D, Sun C 2013 Soft Matter. 9 3272Google Scholar

    [8]

    Celestini F, Kirstetter G 2012 Soft Matter. 8 5992Google Scholar

    [9]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [10]

    Karl A, Frohn A 2000 Phys. Fluids. 12 785Google Scholar

    [11]

    Scheller B L, Bousfield D W 1995 AIChE J. 41 1357Google Scholar

    [12]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Acta Mech. Sin. 50 1024Google Scholar

    [13]

    沈胜强, 张洁珊, 梁刚涛 2015 物理学报 64 134704Google Scholar

    Shen S Q, Zhang J S, Liang G T 2015 Acta Phys. Sin. 64 134704Google Scholar

    [14]

    Šikalo Š, Wilhelm H D, Roisman I V, Jakirlić S, Tropea C 2005 Phys. Fluids 17 062103Google Scholar

    [15]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [16]

    Tran T, Staat H J J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [17]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [18]

    Lee W H 1980 A Pressure Iteration Scheme for Two-Phase Flow Modeling (Washington: Hemisphere Publishing) pp407–432

    [19]

    De Schepper S C K, Heynderickx G J, Marin G B 2009 Comput. Chem. Eng. 33 122Google Scholar

    [20]

    Alizadehdakhel A, Rahimi M, Alsairafi A A 2010 Int. Commun. Heat. Mass. 37 312Google Scholar

    [21]

    Hatta N, Fujimoto H, Kinoshita K, Takuda H 1997 J. Fluid. Eng. 119 692Google Scholar

    [22]

    Liang G T, Shen S Q, Guo Y L, Zhang J L 2016 Int. J. Heat Mass. Tran. 100 48Google Scholar

    [23]

    Chandra S, Aziz S D 1994 J. Heat. Trans. 116 999Google Scholar

    [24]

    李大树, 仇性启, 郑志伟, 崔云静, 马培勇 2015 农业机械学报 46 294Google Scholar

    Li D S, Chou X Q, Zheng Z W, Cui Y J, Ma P Y 2015 Transactions of the Chinese Society for Agricultural Machinery 46 294Google Scholar

    [25]

    Kim H, Kim J 2010 J. Micromech. Microeng. 20 045008Google Scholar

    [26]

    李大树, 仇性启, 崔云静, 郑志伟, 马培勇, 祁风雷 2014 农业机械学报 45 25Google Scholar

    Li D S, Chou X Q, Cui Y J, Zheng Z W, Ma P Y, Qi F L 2014 Transactions of the Chinese Society for Agricultural Machinery 45 25Google Scholar

    [27]

    Chaidron G, Soucemarianadin A, Attané P 1999 Am. Mineral. 84 1235Google Scholar

    [28]

    Breitenbach J, Roisman I V, Tropea C 2018 Exp. Fluids 59 55Google Scholar

    [29]

    Manzello S L, Yang J C 2002 P. Roy. Soc. A:-Math. Phys. 458 2417Google Scholar

    [30]

    吴苏晨, 张程宾, 陈永平, 施明恒 2018 工程热物理学报 39 174

    Wu S C, Zhang C B, Chen Y P, Shi M H 2018 J. Eng. Thermophys. 39 174

    [31]

    Aussillous P, Quéré D 2001 Nature 411 924Google Scholar

    [32]

    Quéré D 2013 Annu. Rev. Fluid. Mech. 45 197

    [33]

    Breitenbach J, Roisman I V, Tropea C 2017 Int. J. Heat. Mass. Tran. 110 34Google Scholar

  • 图 1  复合Level Set-VOF相界面追踪方法计算流程图

    Fig. 1.  Coupled Level Set-VOF phase interface tracking method calculation flow chart.

    图 2  壁面黏附

    Fig. 2.  Wall adhesion diagram.

    图 3  初始时刻液滴撞击壁面几何模型及边界条件

    Fig. 3.  Model of droplet impact on wall at initial time.

    图 4  网格无关性验证

    Fig. 4.  Verification of grid independence.

    图 5  实验结果与模拟结果对比 (a)铺展因子随时间变化; (b)液滴形貌对比

    Fig. 5.  Comparison of experimental and simulated results: (a) Spreading factor changes with time; (b) comparison of droplet morphology evolution.

    图 6  初始速度为(a) 0.1 m/s和(b) 1.6 m/s的液滴撞击不同润湿壁面的形貌演变(D0 = 0.5 mm)

    Fig. 6.  Morphology evolution of droplets impinging on different wetted walls with initial velocity (D0 = 0.5 mm): (a) 0.1 m/s; (b) 1.6 m/s.

    图 7  初始速度为(a) 0.1 m/s和(b) 1.6 m/s的液滴撞击不同润湿壁面的热流分布

    Fig. 7.  Heat flux density distribution of droplets impinging on different wetted walls with initial velocity: (a) 0.1 m/s; (b) 1.6 m/s.

    图 8  不同时刻的温度分布(θ = 30°, U0 = 0.1 m/s, Tw = 300 K)

    Fig. 8.  Temperature distribution at different times (θ = 30°, U0 = 0.1 m/s, Tw = 300 K).

    图 9  不同速度的液滴撞壁后在0.05 ms时刻的压力分布

    Fig. 9.  Pressure distribution at 0.05 ms after droplets impact wall with different velocities.

    图 10  初始速度为(a) 0.1 m/s和(b) 1.6 m/s液滴撞击不同润湿壁面的无量纲气膜厚度随无量纲时间的变化

    Fig. 10.  Dimensional film thickness with dimensionless time curve of droplets impinging on different wetted walls with initial velocity: (a) 0.1 m/s; (b) 1.6 m/s.

    图 11  (a) 0.05 ms和(b) 1.6 ms时不同温度壁面上的热流密度分布

    Fig. 11.  Heat flux distribution on different temperature walls at (a) 0.05 ms and (b) 1.6 ms.

    图 12  (a) 0.05 ms和(b) 1.6 ms不同温度壁面上的液滴温度分布

    Fig. 12.  Droplets temperature distribution on different temperature wall at (a) 0.05 ms and (b) 1.6 ms.

    图 13  不同壁面温度上无量纲气膜厚度随无量纲时间的变化

    Fig. 13.  Curves of dimensionless film thickness with dimensionless time on different wall temperatures.

    图 14  不同壁面温度上气膜厚度随时间的变化 (a)拟合结果; (b) Breitenbach等[33]的分析结果

    Fig. 14.  Curves of film thickness with time on different wall temperatures: (a) Fitting results; (b) Breitenbach et al.[33] analysis results.

    表 1  相关参数

    Table 1.  Related parameters.

    参数数值
    液氮密度/kg·m–3806.88
    液氮表面张力系数/N·m–18.22 × 10–3
    液氮黏度/Pa·s160.08 × 10–6
    液氮滴初始速度/m·s–10.1—1.6
    液氮滴初始直径/mm0.5
    液氮滴初始温度/K78
    壁面温度/K300—500
    液氮潜热/kJ·kg–1199.3
    氮气导热系数/W·cm–1·K–10.002475
    氮气黏度/Pa·s17.54 × 10–6
    氮气密度/kg·m–31.16
    下载: 导出CSV
  • [1]

    Liang G T, Mudawar I 2017 Int. J. Heat Mass. Tran. 115 1174Google Scholar

    [2]

    Liang G T, Mudawar I 2017 Int. J. Heat Mass. Tran. 115 1206Google Scholar

    [3]

    Somasundaram S, Tay A A O 2014 Appl. Therm. Eng. 69 199Google Scholar

    [4]

    Liu X F, Xue R, Ruan Y X, Chen L, Zhang X Q, Hou Y 2017 Cryogenics 83 57Google Scholar

    [5]

    Xue R, Ruan Y X, Liu X F, Chen L, Zhang X Q, Hou Y, Chen S T 2018 Appl. Therm. Eng. 142 717Google Scholar

    [6]

    Kilgore R A, Dress D A 1984 Cryogenics 24 395Google Scholar

    [7]

    Tran T, Staat H J J, Susarrey-Arce A, Foertsch T C, van Houselt A, Gardeniers H J G E, Prosperetti A, Lohse D, Sun C 2013 Soft Matter. 9 3272Google Scholar

    [8]

    Celestini F, Kirstetter G 2012 Soft Matter. 8 5992Google Scholar

    [9]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [10]

    Karl A, Frohn A 2000 Phys. Fluids. 12 785Google Scholar

    [11]

    Scheller B L, Bousfield D W 1995 AIChE J. 41 1357Google Scholar

    [12]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Acta Mech. Sin. 50 1024Google Scholar

    [13]

    沈胜强, 张洁珊, 梁刚涛 2015 物理学报 64 134704Google Scholar

    Shen S Q, Zhang J S, Liang G T 2015 Acta Phys. Sin. 64 134704Google Scholar

    [14]

    Šikalo Š, Wilhelm H D, Roisman I V, Jakirlić S, Tropea C 2005 Phys. Fluids 17 062103Google Scholar

    [15]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [16]

    Tran T, Staat H J J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [17]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [18]

    Lee W H 1980 A Pressure Iteration Scheme for Two-Phase Flow Modeling (Washington: Hemisphere Publishing) pp407–432

    [19]

    De Schepper S C K, Heynderickx G J, Marin G B 2009 Comput. Chem. Eng. 33 122Google Scholar

    [20]

    Alizadehdakhel A, Rahimi M, Alsairafi A A 2010 Int. Commun. Heat. Mass. 37 312Google Scholar

    [21]

    Hatta N, Fujimoto H, Kinoshita K, Takuda H 1997 J. Fluid. Eng. 119 692Google Scholar

    [22]

    Liang G T, Shen S Q, Guo Y L, Zhang J L 2016 Int. J. Heat Mass. Tran. 100 48Google Scholar

    [23]

    Chandra S, Aziz S D 1994 J. Heat. Trans. 116 999Google Scholar

    [24]

    李大树, 仇性启, 郑志伟, 崔云静, 马培勇 2015 农业机械学报 46 294Google Scholar

    Li D S, Chou X Q, Zheng Z W, Cui Y J, Ma P Y 2015 Transactions of the Chinese Society for Agricultural Machinery 46 294Google Scholar

    [25]

    Kim H, Kim J 2010 J. Micromech. Microeng. 20 045008Google Scholar

    [26]

    李大树, 仇性启, 崔云静, 郑志伟, 马培勇, 祁风雷 2014 农业机械学报 45 25Google Scholar

    Li D S, Chou X Q, Cui Y J, Zheng Z W, Ma P Y, Qi F L 2014 Transactions of the Chinese Society for Agricultural Machinery 45 25Google Scholar

    [27]

    Chaidron G, Soucemarianadin A, Attané P 1999 Am. Mineral. 84 1235Google Scholar

    [28]

    Breitenbach J, Roisman I V, Tropea C 2018 Exp. Fluids 59 55Google Scholar

    [29]

    Manzello S L, Yang J C 2002 P. Roy. Soc. A:-Math. Phys. 458 2417Google Scholar

    [30]

    吴苏晨, 张程宾, 陈永平, 施明恒 2018 工程热物理学报 39 174

    Wu S C, Zhang C B, Chen Y P, Shi M H 2018 J. Eng. Thermophys. 39 174

    [31]

    Aussillous P, Quéré D 2001 Nature 411 924Google Scholar

    [32]

    Quéré D 2013 Annu. Rev. Fluid. Mech. 45 197

    [33]

    Breitenbach J, Roisman I V, Tropea C 2017 Int. J. Heat. Mass. Tran. 110 34Google Scholar

  • [1] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟. 物理学报, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [2] 王浩, 徐进良. 油面上相邻Leidenfrost液滴的相互作用及运动机制. 物理学报, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [3] 李逢超, 付宇, 李超, 杨建刚, 胡春波. 铝液滴撞击曲面的流动特性分析. 物理学报, 2022, 71(18): 184701. doi: 10.7498/aps.71.20220442
    [4] 刘联胜, 刘轩臣, 贾文琪, 田亮, 杨华, 段润泽. 小液滴撞击壁面传热特性数值分析. 物理学报, 2021, 70(7): 074402. doi: 10.7498/aps.70.20201354
    [5] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [6] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [7] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [8] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [9] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间. 物理学报, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [10] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究. 物理学报, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [11] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [12] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [13] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究. 物理学报, 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [14] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟. 物理学报, 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [15] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [16] 李大鸣, 王志超, 白玲, 王笑. 液滴撞击孔口附近壁面运动过程的模拟研究. 物理学报, 2013, 62(19): 194704. doi: 10.7498/aps.62.194704
    [17] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象. 物理学报, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [18] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析. 物理学报, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [19] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析. 物理学报, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [20] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
计量
  • 文章访问数:  8818
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-18
  • 修回日期:  2019-08-02
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回