Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparison of electrical wire explosion characteristics of single wire and wire array in air

Li Chen Han Ruo-Yu Liu Yi Zhang Chen-Yang Ouyang Ji-Ting Ding Wei-Dong

Citation:

Comparison of electrical wire explosion characteristics of single wire and wire array in air

Li Chen, Han Ruo-Yu, Liu Yi, Zhang Chen-Yang, Ouyang Ji-Ting, Ding Wei-Dong
PDF
HTML
Get Citation
  • In this paper, discharge characteristics of a planar copper wire array explosion driven by a microsecond pulsed current source (500 J stored energy) in atmospheric air medium were studied. Meanwhile, controlled experiments were performed with single wire cases. With a 2 cm distance between electrodes, 2-16 copper wires with a diameter of 100 μm were selected to form planar copper wire arrays, and single copper wires with diameter of 50-400 μm were selected for comparisons. Load voltage, circuit current and light radiation intensity were measured. Electric power and deposited energy were calculated. The experimental results show that for the single wire case, with the increase of mass (diameter), the process of vaporization and ionization become slower, manifested as a delay of the voltage peak and an increase of the full width half maximum (FWHM) of the voltage pulse from 0.07 μs to 0.64 μs. In contrast, although the explosion time of wire array load was delayed with the increase of mass, the duration of vaporization and ionization did not change significantly with a FWHM of 0.11 ± 0.01 μs. In addition, the deposited energy of wire array load before breakdown was lower than that of single wire load with the same mass. As for the optical radiation intensity, under three cases with the same mass, the peak intensity of wire array explosion is about 28%, 49% and 52% higher than that of single wire explosion. There may be two reasons which cause the difference between the single wire load and wire array load. First, the larger specific surface area of the wire array load makes faster phase transitions. Second, the development of thermal or magnetohydrodynamics for the two kinds of loads was different, which should be responsible for the differences in energy deposition and optical emission.
      Corresponding author: Han Ruo-Yu, r.han@bit.edu.cn
    [1]

    Wu J, Li X W, Li M, Li Y, Qiu A C 2017 J. Phys. D: Appl. Phys. 50 403002Google Scholar

    [2]

    韩若愚, 吴佳玮, 丁卫东, 周海滨, 邱爱慈, 张永民 2019 中国电机工程学报 39 0258Google Scholar

    Han R Y, Wu J W, Ding W D, Zhou H B, Qiu A C, Zhang Y M 2019 Proc. Chin. Soc. Elect. Eng. 39 0258Google Scholar

    [3]

    张永民, 姚伟博, 邱爱慈, 汤俊萍, 王宇, 呼义翔 2019 高电压技术 45 2668Google Scholar

    Zhang Y M, Yao W B, Qiu A C, Tang J P, Hu Y X 2019 High Voltage Engin. 45 2668Google Scholar

    [4]

    邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 从培天, 吕敏 2006 物理学报 55 5917Google Scholar

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, Lv M 2006 Acta Phys. Sin. 55 5917Google Scholar

    [5]

    Haines M G 2011 Plasma Phys. Controlled Fusion 53 093001Google Scholar

    [6]

    但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 物理学报 62 245201Google Scholar

    Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ouyang K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201Google Scholar

    [7]

    吴坚 2012 博士学位论文(北京: 清华大学)

    Wu J 2012 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [8]

    李业勋 2002 硕士学位论文(绵阳: 中国工程物理研究院)

    Li Y X 2002 M. S. Thesis (Mianyang: China Academy Of Engineering Physics) (in Chinese)

    [9]

    毛志国 2009 博士学位论文(北京: 清华大学)

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [10]

    Kotov Y A 2003 J. Nanopart. Res. 5 539Google Scholar

    [11]

    Li X W, Chao Y C, Wu J, Han R Y, Zhou H B, Qiu A C 2015 J. Appl. Phys. 118 023301Google Scholar

    [12]

    Han R Y, Wu J W, Zhou H B, Zhang Y M, Qiu A C 2019 J. Appl. Phys. 125 153302Google Scholar

    [13]

    Han R Y, Zhou H B, Wu J W, Thomas C, Ren H, Wu J, Zhang Y M, Qiu A C 2017 Phys. Plasmas 24 063511Google Scholar

    [14]

    Li L X, Zou X B, Wang X X 2018 Phys. Plasmas 25 053502Google Scholar

    [15]

    Sarkisov GS, Sasorov PV, Struve KW, McDaniel D H 2004 J. Appl. Phys. 96 1674Google Scholar

    [16]

    Grinenko A, Krasik YE, Efimov S, Fedotov A, Gurovich V T 2006 Phys. Plasmas 13 042701Google Scholar

    [17]

    Qian D, Li L X, Zou X B, Wang X X 2019 IEEE Puled Powerand Plasma Science Conference Orlando, USA, June 23–28, 2019, P6 E2

    [18]

    Bland S N, Krasik Y E, Yanuka D, Gardner R, MacDonald J, Virozub A, Efimov S, Gleizer S, Chaturvedi N 2017 Phys. Plasmas 24 082702Google Scholar

    [19]

    Krasik Y E, Efimov S, Sheftman D, Fedotov-Gefen A, Antonov O, Shafer D, Yanuka D, Nitishinskiy M, Kozlov M, Gilburd L, Toker G, Gleizer S 2016 IEEE Trans. Plasma Sci. 44 412Google Scholar

    [20]

    张永民, 安世岗, 陈殿赋, 师庆民, 张增辉, 赵有志, 罗伙根, 邱爱慈, 秦勇 2019 煤矿安全 50 1003Google Scholar

    Zhang Y M, An S G, Chen D B, ShiQ M, Zhang Z H, Zhao Y Z, Luo H G, Qiu A C, Qin Y 2019 Safety. In. Coal. Mines. 50 1003Google Scholar

    [21]

    薛乐星, 潘文, 冯博, 封雪松, 赵娟, 冯晓军 2019 火炸药学报 1 6

    Xue L X, Pan W, Feng B, Feng X S, Zhao J, Feng X J 2019 Chin. J. Expl. Propell. 1 6

    [22]

    张金海, 邱爱慈, 王亮平, 李沫, 孙铁平, 李阳, 从培天, 盛亮 2019 原子能科学技术 53 1509Google Scholar

    Zhang J H, Qiu A C, Wang L P, Li M, SunT P, Li Y, Cong P T, Sheng L 2019 At. Energ. Sci. Technol. 53 1509Google Scholar

    [23]

    Yanuka D, Theocharous S, Bland S N 2019 Phys. Plasmas 26 122704Google Scholar

    [24]

    Efimov S, Fedotov A, Gleizer S, Gurovich V T, Bazalitski G, Krasik Y E 2008 Phys. Plasmas 15 112703Google Scholar

    [25]

    Fedotov-Gefen A, Efimov S, Gilburd L, Bazalitski G, Gurovich V T, KrasikY E 2011 Phys. Plasmas 18 062701Google Scholar

    [26]

    Antonov O, Efimov S, Yanuka D, Kozlov M, Gurovich V T, Krasik Y E 2013 Appl. Phys. Lett. 102 124104Google Scholar

    [27]

    盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 李沫 2014 物理学报 23 235205Google Scholar

    Sheng L, Peng B D, Yuan Y, Zhang M, Li K N, Zhang X J, Zhao C, Li M 2014 Acta Phys. Sin. 23 235205Google Scholar

    [28]

    Rososhek A, Efimov S, Virozub A, Maler D, Krasik Y E 2019 Appl. Phys. Lett. 115 074101Google Scholar

    [29]

    Efimov S, Gurovich V T, Bazalitski G, Fedotov A, Krasika Y E 2009 J. Appl. Phys. 106 073308Google Scholar

    [30]

    周海滨 2016 博士学位论文(西安: 西安交通大学)

    Zhou H B 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [31]

    Tucker T J, Toth R P 1975 Sandia Rept. 75 0041

    [32]

    Sarkisov G, Struve KW, McDaniel D H 2005 Phys. Plasmas 12 052702Google Scholar

    [33]

    Tkachenko SI, Kuskova NI 1999 J. Phys.-Condes. Matter. 11 2223Google Scholar

    [34]

    Kuskova N I 1998 Tech. Phys. Lett. 24 559Google Scholar

    [35]

    Kuskova N. I, Tkachenko SI, Koval S V 1997 J. Phys.-Condes. Matter. 9 6175Google Scholar

    [36]

    Yao W B, Zhou H B, Han R Y, Zhang Y M, Zhao Z, Xu Q F, Qiu A C 2019 Phys. Plasmas 26 093502Google Scholar

  • 图 1  实验装置图 (a)电路示意图; (b)丝阵负载实物图

    Figure 1.  Experimentalsetup: (a) Circuit diagram; (b) wirearrayload.

    图 2  金属丝电爆炸放电参数与阶段划分

    Figure 2.  Parameters and stages of explosive discharge of wire.

    图 3  铜单丝不同质量(直径)下参数随时间的变化规律 (a) 电压; (b) 电流; (c) 电功率; (d) 沉积能量; (e) 电阻

    Figure 3.  Parameter variation of copper single wire with time varying under different mass (diameter): (a) Voltage; (b) electric current; (c) power; (d) deposited energy; (e) resistance.

    图 4  铜丝阵不同质量(根数)下参数随时间变化规律 (a) 电压; (b) 电流; (c) 电功率; (d) 沉积能量; (e) 电阻

    Figure 4.  Parameter variation of copper wire array with time varying under different mass (number of wires): (a) Voltage; (b) electric current; (c) power; (d) deposited energy; (e) resistance.

    图 5  铜单丝与丝阵负载电流、功率、光辐、及光辐射一阶导数波形图 (a) 铜单丝200 μm; (b) 铜丝阵4根

    Figure 5.  Waveforms of current and light radiation of copper single wire and wire array: (a) Copper singlewire with 200 μm diameter; (b) copper wire array with 4 wires.

    图 6  铜单丝与丝阵负载光辐射随质量变化规律图 (a) 铜单丝负载; (b) 铜丝阵负载

    Figure 6.  Light radiationvariation of copper single wire and wire array under different mass: (a) Copper single wire load; (b) copper wire array load

    图 7  光辐射信号采集示意图

    Figure 7.  Acquisition process of light radiation.

    图 8  相同质量时单丝负载与丝阵负载的参数比较 (a)电压; (b) 电流; (c)电功率; (d)光辐射; (e) 电阻

    Figure 8.  Parameter comparison of copper single wire and wire array with the same mass: (a) Voltage; (b) electric current; (c) power; (d) light radiation; (e) resistance.

    图 9  单丝负载与丝阵负载沉积能量随质量变化规律 (a) 电压崩前沉积能量; (b) 电流第一个过零点前沉积能量

    Figure 9.  Deposited energy of copper single wire and wire array with mass varying: (a) Deposited energy before voltage collapse; (b) deposited energy before the current first crosses zero.

    表 1  铜单丝不同质量(直径)下的参数比较

    Table 1.  Parameter comparison of copper single wire under different mass(diameter).

    参数种类铜单丝直径/μm
    50100150200300400
    电压峰值/kV46.2 ± 2.742.1 ± 1.531.7 ± 1.928.9 ± 0.724.1 ± 1.17.1 ± 0.4
    电压峰值出现时间/μs0.26 ± 0.010.77 ± 0.061.30 ± 0.031.93 ± 0.023.40 ± 0.046.45 ± 0.04
    电压峰半高宽/μs0.07 ± 0.010.12 ± 0.010.14 ± 0.010.17 ± 0.010.28 ± 0.010.64 ± 0.02
    电压峰前沉积能量/J2.7 ± 0.213.9 ± 0.534.7 ± 2.361.6 ± 3.4115.8 ± 4.1123.8 ± 5.8
    电流第一个过零点前沉积能量/J40.2 ± 1.470.3 ± 3.3118.6 ± 4.9159.2 ± 5.1217.5 ± 8.4138.9 ± 4.6
    初始电阻/mΩ178.344.619.811.14.92.8
    开始气化所需能量/J0.52.04.58.018.032.2
    完全气化所需能量/J2.28.619.434.577.2137.9
    DownLoad: CSV

    表 2  铜丝阵不同质量(根数)下的参数比较

    Table 2.  Parameter comparison of copper wire array under different mass (number of wires).

    参数种类铜丝阵根数/根
    2468910121416
    电压峰值/kV41.3±2.634.2±1.232.7±1.132.6±0.628.3±1.022.8±0.821.1±1.121.2±0.47.9±0.2
    电压峰值出现时间/μs1.06±0.011.61±0.052.20±0.012.72±0.082.96±0.083.20±0.043.84±0.024.32±0.215.01±0.36
    电压峰半高宽/μs0.10±0.010.09±0.020.11±0.010.11±0.0080.11±0.010.12±0.0090.11±0.010.12±0.010.27±0.03
    电压峰前沉积能量/J24.2±1.639.1±2.758.9±1.772.9±6.583.6±1.582.3±3.686.7±2.097.7±3.695.3±3.3
    电流第一个过零点
    前沉积能量/J
    89.2±3.6122.1±4.2142.3±3.3150.5±9.1152.0±7.3155.7±3.5151.5±5.6148.2±6.2130.0±5.7
    初始电阻/mΩ22.311.17.45.64.94.53.73.22.8
    开始气化所需能量/J4.08.012.016.018.020.024.028.032.0
    完全气化所需能量/J17.234.451.668.877.486.0103.2120.4137.6
    DownLoad: CSV

    表 3  质量相同时单丝负载与丝阵负载沉积能量数值表

    Table 3.  The value of deposited energy of copper single wire and wire array with the same mass.

    参数种类5.59 mg12.51 mg22.35 mg
    200 μm单丝丝阵4根300 μm单丝丝阵9根400 μm单丝丝阵16根
    电压崩前沉积能量/J61.6 ± 3.439.1 ± 2.7115.8 ± 4.183.6 ± 1.5123.8 ± 5.895.3 ± 3.3
    电压崩前每个原子沉积能量/ eV·atom7.2 ± 0.44.6 ± 0.36.0 ± 0.24.4 ± 0.13.6 ± 0.22.8 ± 0.1
    电流第一个过零点前沉积能量/J159.2 ± 5.1122.1 ± 4.2217.5 ± 8.4152.0 ± 7.3138.9 ± 4.6130.0 ± 5.7
    电流第一个过零点前每个原子沉积能量/eV·atom–118.7 ± 0.614.3 ± 0.511.2 ± 0.47.9 ± 0.44.1 ± 0.13.8 ± 0.2
    DownLoad: CSV
  • [1]

    Wu J, Li X W, Li M, Li Y, Qiu A C 2017 J. Phys. D: Appl. Phys. 50 403002Google Scholar

    [2]

    韩若愚, 吴佳玮, 丁卫东, 周海滨, 邱爱慈, 张永民 2019 中国电机工程学报 39 0258Google Scholar

    Han R Y, Wu J W, Ding W D, Zhou H B, Qiu A C, Zhang Y M 2019 Proc. Chin. Soc. Elect. Eng. 39 0258Google Scholar

    [3]

    张永民, 姚伟博, 邱爱慈, 汤俊萍, 王宇, 呼义翔 2019 高电压技术 45 2668Google Scholar

    Zhang Y M, Yao W B, Qiu A C, Tang J P, Hu Y X 2019 High Voltage Engin. 45 2668Google Scholar

    [4]

    邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 从培天, 吕敏 2006 物理学报 55 5917Google Scholar

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, Lv M 2006 Acta Phys. Sin. 55 5917Google Scholar

    [5]

    Haines M G 2011 Plasma Phys. Controlled Fusion 53 093001Google Scholar

    [6]

    但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 物理学报 62 245201Google Scholar

    Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ouyang K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201Google Scholar

    [7]

    吴坚 2012 博士学位论文(北京: 清华大学)

    Wu J 2012 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [8]

    李业勋 2002 硕士学位论文(绵阳: 中国工程物理研究院)

    Li Y X 2002 M. S. Thesis (Mianyang: China Academy Of Engineering Physics) (in Chinese)

    [9]

    毛志国 2009 博士学位论文(北京: 清华大学)

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [10]

    Kotov Y A 2003 J. Nanopart. Res. 5 539Google Scholar

    [11]

    Li X W, Chao Y C, Wu J, Han R Y, Zhou H B, Qiu A C 2015 J. Appl. Phys. 118 023301Google Scholar

    [12]

    Han R Y, Wu J W, Zhou H B, Zhang Y M, Qiu A C 2019 J. Appl. Phys. 125 153302Google Scholar

    [13]

    Han R Y, Zhou H B, Wu J W, Thomas C, Ren H, Wu J, Zhang Y M, Qiu A C 2017 Phys. Plasmas 24 063511Google Scholar

    [14]

    Li L X, Zou X B, Wang X X 2018 Phys. Plasmas 25 053502Google Scholar

    [15]

    Sarkisov GS, Sasorov PV, Struve KW, McDaniel D H 2004 J. Appl. Phys. 96 1674Google Scholar

    [16]

    Grinenko A, Krasik YE, Efimov S, Fedotov A, Gurovich V T 2006 Phys. Plasmas 13 042701Google Scholar

    [17]

    Qian D, Li L X, Zou X B, Wang X X 2019 IEEE Puled Powerand Plasma Science Conference Orlando, USA, June 23–28, 2019, P6 E2

    [18]

    Bland S N, Krasik Y E, Yanuka D, Gardner R, MacDonald J, Virozub A, Efimov S, Gleizer S, Chaturvedi N 2017 Phys. Plasmas 24 082702Google Scholar

    [19]

    Krasik Y E, Efimov S, Sheftman D, Fedotov-Gefen A, Antonov O, Shafer D, Yanuka D, Nitishinskiy M, Kozlov M, Gilburd L, Toker G, Gleizer S 2016 IEEE Trans. Plasma Sci. 44 412Google Scholar

    [20]

    张永民, 安世岗, 陈殿赋, 师庆民, 张增辉, 赵有志, 罗伙根, 邱爱慈, 秦勇 2019 煤矿安全 50 1003Google Scholar

    Zhang Y M, An S G, Chen D B, ShiQ M, Zhang Z H, Zhao Y Z, Luo H G, Qiu A C, Qin Y 2019 Safety. In. Coal. Mines. 50 1003Google Scholar

    [21]

    薛乐星, 潘文, 冯博, 封雪松, 赵娟, 冯晓军 2019 火炸药学报 1 6

    Xue L X, Pan W, Feng B, Feng X S, Zhao J, Feng X J 2019 Chin. J. Expl. Propell. 1 6

    [22]

    张金海, 邱爱慈, 王亮平, 李沫, 孙铁平, 李阳, 从培天, 盛亮 2019 原子能科学技术 53 1509Google Scholar

    Zhang J H, Qiu A C, Wang L P, Li M, SunT P, Li Y, Cong P T, Sheng L 2019 At. Energ. Sci. Technol. 53 1509Google Scholar

    [23]

    Yanuka D, Theocharous S, Bland S N 2019 Phys. Plasmas 26 122704Google Scholar

    [24]

    Efimov S, Fedotov A, Gleizer S, Gurovich V T, Bazalitski G, Krasik Y E 2008 Phys. Plasmas 15 112703Google Scholar

    [25]

    Fedotov-Gefen A, Efimov S, Gilburd L, Bazalitski G, Gurovich V T, KrasikY E 2011 Phys. Plasmas 18 062701Google Scholar

    [26]

    Antonov O, Efimov S, Yanuka D, Kozlov M, Gurovich V T, Krasik Y E 2013 Appl. Phys. Lett. 102 124104Google Scholar

    [27]

    盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 李沫 2014 物理学报 23 235205Google Scholar

    Sheng L, Peng B D, Yuan Y, Zhang M, Li K N, Zhang X J, Zhao C, Li M 2014 Acta Phys. Sin. 23 235205Google Scholar

    [28]

    Rososhek A, Efimov S, Virozub A, Maler D, Krasik Y E 2019 Appl. Phys. Lett. 115 074101Google Scholar

    [29]

    Efimov S, Gurovich V T, Bazalitski G, Fedotov A, Krasika Y E 2009 J. Appl. Phys. 106 073308Google Scholar

    [30]

    周海滨 2016 博士学位论文(西安: 西安交通大学)

    Zhou H B 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [31]

    Tucker T J, Toth R P 1975 Sandia Rept. 75 0041

    [32]

    Sarkisov G, Struve KW, McDaniel D H 2005 Phys. Plasmas 12 052702Google Scholar

    [33]

    Tkachenko SI, Kuskova NI 1999 J. Phys.-Condes. Matter. 11 2223Google Scholar

    [34]

    Kuskova N I 1998 Tech. Phys. Lett. 24 559Google Scholar

    [35]

    Kuskova N. I, Tkachenko SI, Koval S V 1997 J. Phys.-Condes. Matter. 9 6175Google Scholar

    [36]

    Yao W B, Zhou H B, Han R Y, Zhang Y M, Zhao Z, Xu Q F, Qiu A C 2019 Phys. Plasmas 26 093502Google Scholar

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Ma Wei-Cong, Wang Gang. Radiation enhancement phenomenon of isotropic plasma layer coated cylinderical metal antenna. Acta Physica Sinica, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [2] Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang. Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets. Acta Physica Sinica, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [3] Liu Yong-Tang, Sheng Liang, Li Yang, Zhang Jin-Hai, Ouyang Xiao-Ping. Current channel in plasma of inverse exploding planar foils. Acta Physica Sinica, 2022, 71(3): 035205. doi: 10.7498/aps.71.20211495
    [4] Study of the current channel in plasma of inverse exploding planar foils. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211495
    [5] Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Zhao Zhi-Gang, Zhang Dong. Characteristics of electrical explosion of single wire in a vacuum and in the air. Acta Physica Sinica, 2017, 66(18): 185203. doi: 10.7498/aps.66.185203
    [6] Fu Tao, Ouyang Zheng-Biao. Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal. Acta Physica Sinica, 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [7] Peng Chu-Cai, Wang Jin-Xiang, Liu Lin-Lin. Effect of medium on nanopowders prepared by Cu wire electrical explosion. Acta Physica Sinica, 2015, 64(7): 075203. doi: 10.7498/aps.64.075203
    [8] Wang Ping, Hu De-Jiao, Xiao Yu-Fei, Pang Lin. Suppression of metal grating to surface plasma radiation. Acta Physica Sinica, 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [9] Wang Hai-Yan, Dou Xiu-Ming, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Photoluminescence from plasmon-enhanced single InAs quantum dots. Acta Physica Sinica, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [10] Shi Huan-Tong, Zou Xiao-Bing, Zhao Shen, Zhu Xin-Lei, Wang Xin-Xin. Numerical simulation of energy deposition improvment in electrical wire explosion using a parallel wire. Acta Physica Sinica, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [11] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [12] Zou Wen-Kang, Chen Lin, Zhou Liang-Ji, Wang Meng, Yang Li-Bing, Xie Wei-Ping, Deng Jian-Jun. Coupling characteristics research on Z-pinch driver and wire array load. Acta Physica Sinica, 2011, 60(11): 115204. doi: 10.7498/aps.60.115204
    [13] Sheng Liang, Wang Liang-Ping, Li Yang, Peng Bo-Dong, Zhang Mei, Wu Jian, Wang Pei-Wei, Wei Fu-Li, Yuan Yuan. One-dimensional imaging diagnostics of imploding dynamics for planar wire array Z pinch. Acta Physica Sinica, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [14] Wang Zhen, Li Zheng-Hong, Xu Rong-Kun, Yang Jian-Lun, Ding Ning, Xu Ze-Ping, Guo Cun, Ning Cheng, Ning Jia-Min, Jiang Shi-Lun, Zhang Fa-Qiang, Xia Guang-Xin, Li Lin-Bo, Ye Fan, Qin Yi, Xue Fei-Biao, Chen Jin-Chuan. X-ray radiation power optimization in 1MA to 4MA wire-array implosions. Acta Physica Sinica, 2011, 60(2): 025209. doi: 10.7498/aps.60.025209
    [15] Huang Jun, Sun Shun-Kai, Xiao De-Long, Ding Ning, Ning Cheng, Zhang Yang, Xue Chuang. Two-dimensional numerical studies of ablated-plasma dynamics of wire-array Z-pinches. Acta Physica Sinica, 2010, 59(9): 6351-6361. doi: 10.7498/aps.59.6351
    [16] Xia Guang-Xin, Zhang Fa-Qiang, Xu Ze-Ping, Xu Rong-Kun, Chen Jin-Chuan, Ning Jia-Min. Radiation characteristics of single wire array Z-pinch implosion. Acta Physica Sinica, 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [17] Wang Liang-Ping, Han Juan-Juan, Wu Jian, Guo Ning, Wu Gang, Li Yan, Qiu Ai-Ci. Simulation of planar wire array Z-pinch based on single wire behavior. Acta Physica Sinica, 2010, 59(12): 8685-8691. doi: 10.7498/aps.59.8685
    [18] Qiu Ai-Ci, Kuai Bin, Zeng Zheng-Zhong, Wang Wen-Sheng, Qiu Meng-Tong, Wang Liang-Ping, Cong Pei-Tian, Lü Min. Study on W wire array Z pinch plasma radiation at Qiangguang-Ⅰ facility. Acta Physica Sinica, 2006, 55(11): 5917-5922. doi: 10.7498/aps.55.5917
    [19] Ding Ning, Yang Zhen-Hua, Ning Cheng. Optimization design of a wire array load for Z-pinch plasma implosion experiments. Acta Physica Sinica, 2004, 53(3): 808-817. doi: 10.7498/aps.53.808
    [20] CHANG TIE-QIANG. BREMSSTRAHLUNG IN PLASMAS. Acta Physica Sinica, 1982, 31(9): 1152-1165. doi: 10.7498/aps.31.1152
Metrics
  • Abstract views:  6689
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2019
  • Accepted Date:  15 January 2020
  • Published Online:  05 April 2020

/

返回文章
返回