Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesization, characterization, and highly efficient electrocatalysis of chain-like Pt-Ni nanoparticles

Xu Ke-Xin Xia Tian-Yu Zhou Liang Li Shun-Fang Cai Bin Wang Rong-Ming Guo Hai-Zhong

Citation:

Synthesization, characterization, and highly efficient electrocatalysis of chain-like Pt-Ni nanoparticles

Xu Ke-Xin, Xia Tian-Yu, Zhou Liang, Li Shun-Fang, Cai Bin, Wang Rong-Ming, Guo Hai-Zhong
PDF
HTML
Get Citation
  • Fuel cells are one of the promising energy-conversion devices due to their high efficiency and zero emission. Despite tremendous research works in past decades, there remains a tough challenge in realizing the commercial applications of fuel cell technologies. Therefore, the development of highly efficient and stable fuel cell electrocatalyst is the top priority for practical fuel cells. As we all know, the small-size nanoparticles always have high specific surface area, which can provide more active sites to enhance the catalytic activity, while the one-dimensional nanowires usually own high structural stability. It may provide a possibility for the design of a novel bimetal Pt-based alloy nanostructure by combining the structural superiority of both, which can maintain the high stability and maximize the catalytic activity at the same time. Driven by these purposes, a novel nanostructure constructed by Pt-Ni alloy nanoparticles with a one-dimensional chain structure was designed to balance the contradiction between the activity and stability due to the size effects (the smaller the size, the higher the activity, and the worse the stability of the nanocatalyst; and vice versa). Here, a simple one-step solvothermal method has been adopted to produce the novel nanostructures constructed by the chain-like Pt-Ni nanoparticles (Pt-Ni CNPs) with Pt-rich crystal faces and alloy nature. The structure, component and catalysis were investigated by the combination of X-ray diffraction, transmission electron microscopy, X-ray photoemission spectra, and electrochemical measurements. The results show that the as-synthesized Pt-Ni CNP is constructed from a nanowire (with a diameter of about 3 nm and a length of several hundred nanometers) and the nanoparticles (with an average diameter of about 10 nm). This nanostructure is cleverly integrated the structural advantages of one-dimensional nanowires and zero-dimensional nanoparticles, which can significantly enhance the catalytic activity and stability for the methanol oxidation reaction (MOR) in acidic environment. Specially, the mass activity and specific activity of as-prepared Pt-Ni CNPs are 5.7 and 7.6 times higher than those of the commercial Pt/C, respectively. After 1000 cycles of cyclic voltammetry (CV) measurement, Pt-Ni CNPs still retain 91.2% of the specific activity, while the commercial Pt/C undergoes a drastic loss of MOR activities, retaining only 4.4% of the initial activity. It is particularly noteworthy that this nanostructure of Pt-Ni CNP solves the problem of agglomeration of nanoparticle catalysts in the reaction, and provides a new approach to obtain Pt-based nanocatalysts with high catalytic activity and stability at the same time. Our finding will provide insight into more rational designs of Pt-based bimetallic nanocatalysts with one-dimensional architectures, which is expected to promote the further development and large-scale industrial application of the direct methanol fuel.
      Corresponding author: Xia Tian-Yu, tyxia@zzu.edu.cn ; Guo Hai-Zhong, hguo@zzu.edu.cn
    [1]

    Guo S J, Zhang S, Sun S H 2013 Angew. Chem. Int. Ed. 52 8526Google Scholar

    [2]

    Yan Z X, Xie J M, Shen P K 2015 J. Power Sources 286 239Google Scholar

    [3]

    陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京 2012 物理学报 61 076801Google Scholar

    Chen X, Lin Z Z, Yin C, Tang H, Hu Y C, Ning X J 2012 Acta. Phys. Sin. 61 076801Google Scholar

    [4]

    Cui Z M, Chen H, Zhao M T, Marshall D, Yu Y C, Abruna H, DiSalvo F J 2014 J. Am. Chem. Soc. 136 10206Google Scholar

    [5]

    Vandichel M, Moscu A, Grönbeck H 2017 ACS Catal. 7 7431Google Scholar

    [6]

    Guo S J, Wen D, Zhai Y M, Dong S J, Wang E 2010 ACS Nano 4 3959Google Scholar

    [7]

    Yan Y C, Shan H, Li G, Xiao F, Jiang Y Y, Yan Y Y, Jin C H, Zhang H, Wu J B, Yang D R 2016 Nano Lett. 16 7999Google Scholar

    [8]

    田惠忱, 刘丽, 文玉华 2009 物理学报 58 4080Google Scholar

    Tian H C, Liu L, Wen Y H 2009 Acta. Phys. Sin. 58 4080Google Scholar

    [9]

    Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L L, Snyder J D, Li D G, Herron J A, Mavrikakis M 2014 Science 343 1339Google Scholar

    [10]

    Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K 2009 Nat. Chem. 1 552Google Scholar

    [11]

    Bu L Z, Zhang N, Guo S J, Zhang X, Li J, Yao J L, Wu T, Lu G, Ma J Y, Su D 2016 Science 354 1410Google Scholar

    [12]

    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C F, Liu Z C, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A 2010 Nat. Chem. 2 454Google Scholar

    [13]

    汪志刚, 黄娆, 文玉华 2013 物理学报 62 126101Google Scholar

    Wang Z G, Huang R, Wen Y H 2013 Acta. Phys. Sin. 62 126101Google Scholar

    [14]

    Wang D S, Zhao P, Li Y D 2011 Sci. Rep.-UK 1 37Google Scholar

    [15]

    Gu J, Zhang Y W, Tao F F 2012 Chem. Soc. Rev. 41 8050Google Scholar

    [16]

    孙世刚, 文玉华, 张杨, 朱梓忠 2009 物理学报 58 2585Google Scholar

    Sun S G, Wen Y H, Zhang Y, Zhu Z Z 2009 Acta. Phys. Sin. 58 2585Google Scholar

    [17]

    Zhou X W, Zhang R H, Zhou Z Y, Sun S G 2011 J. Power Sources 196 5844Google Scholar

    [18]

    Shan A X, Chen Z C, Li B Q, Chen C P, Wang R M 2015 J. Mater. Chem. A 3 1031Google Scholar

    [19]

    Zhang L W, Gao A, Liu Y, Wang Y, Ma J T 2014 Electrochim. Acta 132 416Google Scholar

    [20]

    Chung D Y, Yoo J M, Sung Y E 2018 Adv. Mater. 30 1704123Google Scholar

    [21]

    Kong D S, Cha J J, Wang H T, Lee H R, Cui Y 2013 Energy Environ. Sci. 6 3553Google Scholar

    [22]

    Xia B Y, Wu H B, Li N, Yan Y, Lou X W, Wang X 2015 Angew. Chem. Int. Ed. 54 3797Google Scholar

    [23]

    Yoo S H, Park S 2007 Adv. Mater. 19 1612Google Scholar

    [24]

    Liu F, Lee J Y, Zhou W J 2006 Small 2 121Google Scholar

    [25]

    Kim J M, Joh H I, Jo S M, Ahn D J, Ha H Y, Hong S A, Kim S K 2010 Electrochim. Acta 55 4827Google Scholar

    [26]

    Liang H W, Cao X, Zhou F, Cui C H, Zhang W J, Yu S H 2011 Adv. Mater. 23 1467Google Scholar

    [27]

    Ding L X, Li G R, Wang Z L, Liu Z Q, Liu H, Tong Y X 2012 Chem. Eur. J. 18 8386Google Scholar

    [28]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354Google Scholar

    [29]

    Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J, Lou X W, Xia B Y 2019 Science 366 850Google Scholar

    [30]

    Luo M C, Sun Y J, Zhang X, Qin Y N, Li M Q, Li Y J, Li C J, Yang Y, Wang L, Gao P, Lu G, Guo S J 2018 Adv. Mater. 30 1705515Google Scholar

    [31]

    Gao F, Zhang Y P, Song P P, Wang J, Yan B, Sun Q W, Li L, Zhu X, Du Y K 2019 Nanoscale 11 4831Google Scholar

    [32]

    Bu L Z, Ding J B, Guo S J, Zhang X, Su D, Zhu X, Yao J L, Guo J, Lu G, Huang X Q 2015 Adv. Mater. 27 7204Google Scholar

    [33]

    Zhao Y P, Tao L, Dang W, Wang L L, Xia M R, Wang B, Liu M M, Gao F M, Zhang J J, Zhao Y F 2019 Small 15 1900288Google Scholar

    [34]

    Qiu X Y, Li T C, Deng S H, Cen K, Xu L D, Tang Y W 2018 Chem. Eur. J. 24 1246Google Scholar

    [35]

    Tseng Y C, Chen H S, Liu C W, Yeh T H, Wang K W 2014 J. Mater. Chem. A 2 4270Google Scholar

    [36]

    Wagner C D 1979 Perkin-Elmer Corporation 80

    [37]

    Wang J, Yang B B, Gao F, Song P P, Li L, Zhang Y P, Lu C, Goh M C, Du Y K 2019 Nanoscale Res. Lett. 14 11Google Scholar

    [38]

    Zhao X, Zhang J, Wang L J, Li H X, Liu Z L, Chen W 2015 ACS Appl. Mater. Interfaces 7 26333Google Scholar

    [39]

    Liu H M, Liu X Y, Li Y M, Jia Y J, Tang Y W, Chen Y 2016 Nano Res. 9 3494Google Scholar

    [40]

    Xie L S, Liu Q, Shi X F, Asiri A M, Luo Y L, Sun X P 2018 Inorg. Chem. Front. 5 1365Google Scholar

    [41]

    Van der Vliet D F, Wang C, Li D G, Paulikas A P, Greeley J, Rankin R B, Strmcnik D, Tripkovic D, Markovic N M, Stamenkovic V R 2012 Angew. Chem. Int. Ed. 51 3139Google Scholar

    [42]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Gu L, Wang R M 2016 ACS Appl. Mater. Interfaces 8 10841Google Scholar

    [43]

    Li K, Li X X, Huang H W, Luo L H, Li X, Yan X P, Ma C, Si R, Yang J L, Zeng J 2018 J. Am. Chem. Soc. 140 16159Google Scholar

    [44]

    Debe M K 2012 Nature 486 43Google Scholar

    [45]

    Wang D Y, Chou H L, Lin Y C, Lai F J, Chen C H, Lee J F, Hwang B J, Chen C C 2012 J. Am. Chem. Soc. 134 10011Google Scholar

    [46]

    Liu H Q, Adzic R R, Wong S S 2015 ACS Appl. Mater. Interfaces 7 26145Google Scholar

    [47]

    Lai S Q, Fu C L, Chen Y X, Yu X, Lai X D, Ye C, Hu J Q 2015 J. Power Sources 274 604Google Scholar

    [48]

    Zhang X R, Fan H S, Zheng J L, Duan S B, Huang Y X, Cui Y M, Wang R M 2018 Catal. Sci. Technol. 8 4757Google Scholar

    [49]

    Du C Y, Chen M, Wang W G, Yin G P 2011 ACS Appl. Mater. Interfaces 3 105Google Scholar

    [50]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Wang R M 2016 Sci. China Mater. 60 57Google Scholar

    [51]

    Lim K H, Chen Z X, Neyman K M, Rösch N 2006 J. Phys. Chem. B 110 14890Google Scholar

    [52]

    Li M F, Zhao Z P, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q H, Gu L, Merinov B V, Lin Z Y 2016 Science 354 1414Google Scholar

    [53]

    Zhang S, Zhang X, Jiang G M, Zhu H Y, Guo S Y, Su D, Lu G, Sun S H 2014 J. Am. Chem. Soc. 136 7734Google Scholar

    [54]

    Wang D L, Xin H L, Hovden R, Wang H, Yu Y C, Muller D A, DiSalvo F J, Abruña H D 2013 Nat. Mater. 12 81Google Scholar

  • 图 1  (a) Pt-Ni CNPs的TEM图像, 插图是纳米颗粒的直径分布统计图; (b) 高放大倍数下单根Pt-Ni CNPs的TEM图像; (c) Pt-Ni CNPs的HAADF-STEM图像; (d)和(e)分别为(c)中Pt和Ni的EDS元素分布

    Figure 1.  (a) TEM image of Pt-Ni CNPs. Inset: graph of the diameter distribution of nanoparticles; (b) TEM image of a single Pt-Ni CNPs at a higher magnification; (c) HAADF-STEM images of Pt-Ni CNPs; (d) and (e) are EDS element distribution images of Pt and Ni in Pt-Ni CNPs corresponding to (c), respectively.

    图 2  (a) Pt-Ni CNPs的 XRD 谱图及Pt 和 Ni 的标准卡片峰(分别对应红色和蓝色); (b) Pt-Ni CNPs的 EDS能谱图; (c)和(d)为Pt-Ni CNPs的XPS谱图, 分别对应Pt的4f峰和Ni的2p峰

    Figure 2.  (a) XRD patterns of Pt-Ni CNPs and standard card peaks of Pt and Ni (corresponding to red and blue respectively); (b) EDS spectrum of Pt-Ni CNPs; (c) and (d) are XPS spectra of Pt-Ni CNPs, corresponding to the 4f peak of Pt and the 2p peak of Ni, respectively.

    图 3  Pt-Ni CNPs (红色) 和商业Pt/C (黑色) 的MOR性能对比 (a), (b)两种催化剂的CV曲线, 分别是ECSA和MOR; (c) 两种样品相对应的质量活性和比活性; (d) 以5 mV/s的扫描速率测得的LSV曲线, 插图是固定电流密度所需提供的电位值

    Figure 3.  MOR performance comparison for Pt-Ni CNPs (red) and commercial Pt/C (black): (a) CV of the above catalysts for ECSAs; (b) CV of the above catalysts for MOR; (c) corresponding mass and specific activities of different catalysts for MOR; (d) LSV curves of the above electrocatalysts with a low scan rate of 5 mV/s. Inset:the potential required for fixed current density.

    图 4  (a) CO溶解曲线; (b)和(c)分别为Pt-Ni CNPs (红色)和商业Pt/C (黑色)在0.5 M H2SO4和1 M CH3OH混合溶液中的稳定性测试: 实线为第一圈CV循环曲线, 虚线为第1000圈CV循环曲线; (d) 两种样品1000圈CV循环前后比活性对比

    Figure 4.  (a) The electrode area-normalized CO stripping curves; Stability test in 0.5 M H2SO4 and 1 M CH3OH solutions: (b) Pt-Ni CNPs (red) and (c) commercial Pt/C (black) with solid line as the first cycle and dashed line as the 1000th cycle; (d) specific activities of two samples before and after 1000 cycles.

  • [1]

    Guo S J, Zhang S, Sun S H 2013 Angew. Chem. Int. Ed. 52 8526Google Scholar

    [2]

    Yan Z X, Xie J M, Shen P K 2015 J. Power Sources 286 239Google Scholar

    [3]

    陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京 2012 物理学报 61 076801Google Scholar

    Chen X, Lin Z Z, Yin C, Tang H, Hu Y C, Ning X J 2012 Acta. Phys. Sin. 61 076801Google Scholar

    [4]

    Cui Z M, Chen H, Zhao M T, Marshall D, Yu Y C, Abruna H, DiSalvo F J 2014 J. Am. Chem. Soc. 136 10206Google Scholar

    [5]

    Vandichel M, Moscu A, Grönbeck H 2017 ACS Catal. 7 7431Google Scholar

    [6]

    Guo S J, Wen D, Zhai Y M, Dong S J, Wang E 2010 ACS Nano 4 3959Google Scholar

    [7]

    Yan Y C, Shan H, Li G, Xiao F, Jiang Y Y, Yan Y Y, Jin C H, Zhang H, Wu J B, Yang D R 2016 Nano Lett. 16 7999Google Scholar

    [8]

    田惠忱, 刘丽, 文玉华 2009 物理学报 58 4080Google Scholar

    Tian H C, Liu L, Wen Y H 2009 Acta. Phys. Sin. 58 4080Google Scholar

    [9]

    Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L L, Snyder J D, Li D G, Herron J A, Mavrikakis M 2014 Science 343 1339Google Scholar

    [10]

    Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K 2009 Nat. Chem. 1 552Google Scholar

    [11]

    Bu L Z, Zhang N, Guo S J, Zhang X, Li J, Yao J L, Wu T, Lu G, Ma J Y, Su D 2016 Science 354 1410Google Scholar

    [12]

    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C F, Liu Z C, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A 2010 Nat. Chem. 2 454Google Scholar

    [13]

    汪志刚, 黄娆, 文玉华 2013 物理学报 62 126101Google Scholar

    Wang Z G, Huang R, Wen Y H 2013 Acta. Phys. Sin. 62 126101Google Scholar

    [14]

    Wang D S, Zhao P, Li Y D 2011 Sci. Rep.-UK 1 37Google Scholar

    [15]

    Gu J, Zhang Y W, Tao F F 2012 Chem. Soc. Rev. 41 8050Google Scholar

    [16]

    孙世刚, 文玉华, 张杨, 朱梓忠 2009 物理学报 58 2585Google Scholar

    Sun S G, Wen Y H, Zhang Y, Zhu Z Z 2009 Acta. Phys. Sin. 58 2585Google Scholar

    [17]

    Zhou X W, Zhang R H, Zhou Z Y, Sun S G 2011 J. Power Sources 196 5844Google Scholar

    [18]

    Shan A X, Chen Z C, Li B Q, Chen C P, Wang R M 2015 J. Mater. Chem. A 3 1031Google Scholar

    [19]

    Zhang L W, Gao A, Liu Y, Wang Y, Ma J T 2014 Electrochim. Acta 132 416Google Scholar

    [20]

    Chung D Y, Yoo J M, Sung Y E 2018 Adv. Mater. 30 1704123Google Scholar

    [21]

    Kong D S, Cha J J, Wang H T, Lee H R, Cui Y 2013 Energy Environ. Sci. 6 3553Google Scholar

    [22]

    Xia B Y, Wu H B, Li N, Yan Y, Lou X W, Wang X 2015 Angew. Chem. Int. Ed. 54 3797Google Scholar

    [23]

    Yoo S H, Park S 2007 Adv. Mater. 19 1612Google Scholar

    [24]

    Liu F, Lee J Y, Zhou W J 2006 Small 2 121Google Scholar

    [25]

    Kim J M, Joh H I, Jo S M, Ahn D J, Ha H Y, Hong S A, Kim S K 2010 Electrochim. Acta 55 4827Google Scholar

    [26]

    Liang H W, Cao X, Zhou F, Cui C H, Zhang W J, Yu S H 2011 Adv. Mater. 23 1467Google Scholar

    [27]

    Ding L X, Li G R, Wang Z L, Liu Z Q, Liu H, Tong Y X 2012 Chem. Eur. J. 18 8386Google Scholar

    [28]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354Google Scholar

    [29]

    Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J, Lou X W, Xia B Y 2019 Science 366 850Google Scholar

    [30]

    Luo M C, Sun Y J, Zhang X, Qin Y N, Li M Q, Li Y J, Li C J, Yang Y, Wang L, Gao P, Lu G, Guo S J 2018 Adv. Mater. 30 1705515Google Scholar

    [31]

    Gao F, Zhang Y P, Song P P, Wang J, Yan B, Sun Q W, Li L, Zhu X, Du Y K 2019 Nanoscale 11 4831Google Scholar

    [32]

    Bu L Z, Ding J B, Guo S J, Zhang X, Su D, Zhu X, Yao J L, Guo J, Lu G, Huang X Q 2015 Adv. Mater. 27 7204Google Scholar

    [33]

    Zhao Y P, Tao L, Dang W, Wang L L, Xia M R, Wang B, Liu M M, Gao F M, Zhang J J, Zhao Y F 2019 Small 15 1900288Google Scholar

    [34]

    Qiu X Y, Li T C, Deng S H, Cen K, Xu L D, Tang Y W 2018 Chem. Eur. J. 24 1246Google Scholar

    [35]

    Tseng Y C, Chen H S, Liu C W, Yeh T H, Wang K W 2014 J. Mater. Chem. A 2 4270Google Scholar

    [36]

    Wagner C D 1979 Perkin-Elmer Corporation 80

    [37]

    Wang J, Yang B B, Gao F, Song P P, Li L, Zhang Y P, Lu C, Goh M C, Du Y K 2019 Nanoscale Res. Lett. 14 11Google Scholar

    [38]

    Zhao X, Zhang J, Wang L J, Li H X, Liu Z L, Chen W 2015 ACS Appl. Mater. Interfaces 7 26333Google Scholar

    [39]

    Liu H M, Liu X Y, Li Y M, Jia Y J, Tang Y W, Chen Y 2016 Nano Res. 9 3494Google Scholar

    [40]

    Xie L S, Liu Q, Shi X F, Asiri A M, Luo Y L, Sun X P 2018 Inorg. Chem. Front. 5 1365Google Scholar

    [41]

    Van der Vliet D F, Wang C, Li D G, Paulikas A P, Greeley J, Rankin R B, Strmcnik D, Tripkovic D, Markovic N M, Stamenkovic V R 2012 Angew. Chem. Int. Ed. 51 3139Google Scholar

    [42]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Gu L, Wang R M 2016 ACS Appl. Mater. Interfaces 8 10841Google Scholar

    [43]

    Li K, Li X X, Huang H W, Luo L H, Li X, Yan X P, Ma C, Si R, Yang J L, Zeng J 2018 J. Am. Chem. Soc. 140 16159Google Scholar

    [44]

    Debe M K 2012 Nature 486 43Google Scholar

    [45]

    Wang D Y, Chou H L, Lin Y C, Lai F J, Chen C H, Lee J F, Hwang B J, Chen C C 2012 J. Am. Chem. Soc. 134 10011Google Scholar

    [46]

    Liu H Q, Adzic R R, Wong S S 2015 ACS Appl. Mater. Interfaces 7 26145Google Scholar

    [47]

    Lai S Q, Fu C L, Chen Y X, Yu X, Lai X D, Ye C, Hu J Q 2015 J. Power Sources 274 604Google Scholar

    [48]

    Zhang X R, Fan H S, Zheng J L, Duan S B, Huang Y X, Cui Y M, Wang R M 2018 Catal. Sci. Technol. 8 4757Google Scholar

    [49]

    Du C Y, Chen M, Wang W G, Yin G P 2011 ACS Appl. Mater. Interfaces 3 105Google Scholar

    [50]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Wang R M 2016 Sci. China Mater. 60 57Google Scholar

    [51]

    Lim K H, Chen Z X, Neyman K M, Rösch N 2006 J. Phys. Chem. B 110 14890Google Scholar

    [52]

    Li M F, Zhao Z P, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q H, Gu L, Merinov B V, Lin Z Y 2016 Science 354 1414Google Scholar

    [53]

    Zhang S, Zhang X, Jiang G M, Zhu H Y, Guo S Y, Su D, Lu G, Sun S H 2014 J. Am. Chem. Soc. 136 7734Google Scholar

    [54]

    Wang D L, Xin H L, Hovden R, Wang H, Yu Y C, Muller D A, DiSalvo F J, Abruña H D 2013 Nat. Mater. 12 81Google Scholar

  • [1] Xie Jia-Miao, Li Jing-Yang, Zhou Jia-Yi, Hao Wen-Qian. Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack. Acta Physica Sinica, 2024, 73(23): 238201. doi: 10.7498/aps.73.20241176
    [2] Shen Shuang-Lin, Zhang Xiao-Kun, Wan Xing-Wen, Zheng Ke-Qing, Ling Yi-Han, Wang Shao-Rong. Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model. Acta Physica Sinica, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [3] Wang Ji-Kang, Li Hua, Peng Yu-Fei, Li Xiao-Yan, Zhang Xin-Yu. Dynamic characteristics of proton exchange membrane fuel cell on a multiple time scale. Acta Physica Sinica, 2022, 71(15): 158802. doi: 10.7498/aps.71.20212015
    [4] Chang Jing, Chen Ji. One-dimensional structures in nanoconfinement. Acta Physica Sinica, 2022, 71(12): 126101. doi: 10.7498/aps.71.20220035
    [5] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [6] Gao Chao, Yuan Jun-Jie, Cao Jin-Jun, Yang Hui-Nan, Shan Yan-Guang. Three-dimensional simulation of dual-scale deposition structures from evaporative self-assembly of nanofluid films. Acta Physica Sinica, 2019, 68(14): 140205. doi: 10.7498/aps.68.20190270
    [7] Zhang Yi-Nan, Wang Li-Hua, Liu Hua-Jie, Fan Chun-Hai. DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics. Acta Physica Sinica, 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [8] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [9] Lu Yong-Jun, Yang Yi, Wang Feng-Hui, Lou Kang, Zhao Xiang. Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process. Acta Physica Sinica, 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [10] Liu Jia, Xu Ling-Ling, Zhang Hai-Lin, Lü Wei, Zhu Lin, Gao Hong, Zhang Xi-Tian. One-step hydrothermal process for self-assembly of zinc oxide nanorods array on Al-doped ZnO nanoplate surface. Acta Physica Sinica, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [11] Chen Zhao, Ding Hong-Rui, Chen Wei-Hua, Li Yan, Zhang Guo-Yi, Lu An-Huai, Hu Xiao-Dong. Photoelectric catalytic properties of silicon solar cell used in microbial fuel cell system. Acta Physica Sinica, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [12] Zhang Bao-Hua, Guo Fu-Qiang, Sun Yi, Wang Jun-Jun, Li Yan-Qing, Zhi Li-Li. Solvothermal recrystallized synthesis of one-dimensional CdS nanorods self-assembled from nanoparticles. Acta Physica Sinica, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [13] Qin Jie-Ming, Tian Li-Fei, Zhao Dong-Xu, Jiang Da-Yong, Cao Jian-Ming, Ding Meng, Guo Zhen. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [14] Li Shu-Li, Zhang Jian-Min. Energies, electronic structures and magnetic properties of Ni atomic chain encapsulated in carbon nanotubes: a first-principles calculation. Acta Physica Sinica, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [15] Wu Xiang, Cai Wei, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [16] Yao Yao, Fang Zhong-Hui, Zhou Jiang, Li Wei, Ma Zhong-Yuan, Xu Jun, Huang Xin-Fan, Chen Kun-Ji, Yasuyuki Miyamoto, Shunri Oda. One-dimensional periodic nanocrystalline silicon arrays made by pulsed laser interference crystallization. Acta Physica Sinica, 2008, 57(8): 4960-4965. doi: 10.7498/aps.57.4960
    [17] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [18] Xu Can, Cao Juan, Gao Chen-Yang. Calculation of structure and properties of one-dimensional silica nanomaterials based on first-principle. Acta Physica Sinica, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [19] Shen Cheng-Min, Su Yi-Kun, Yang Hai-Tao, Yang Tian-Zhong, Wang Yu-Ping, Gao Hong-Jun. Self-assembled two-dimensional structure of magnetic cobalt nanocrystals. Acta Physica Sinica, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [20] XU HUI, WEN SHENG. ELECTRONIC STRUCTURE OF THE ONE-DIMENSIONAL NANOMETER SOLID STATE MODEL. Acta Physica Sinica, 1992, 41(10): 1661-1665. doi: 10.7498/aps.41.1661
Metrics
  • Abstract views:  16165
  • PDF Downloads:  375
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2020
  • Accepted Date:  09 March 2020
  • Published Online:  05 April 2020

/

返回文章
返回