-
The current research on the dynamic performance of the proton exchange fuel cell is mostly aimed at the influence of operating parameters on the system, but does not involve with the dynamic characteristics of the cell on a multiple time scale nor the study of the corresponding multiple time scale model. In order to detect the dynamic changes of the proton exchange membrane fuel cell, the effects of various factors in the system on the output performance on different time scales are investigated. The effective partial pressure of oxygen and hydrogen are obtained by the mass diffusion equation and the ideal gas state equation, and the dynamic model is established according to the law of conservation of energy, the law of thermodynamics, and the electrochemical reaction equation. By setting the load mutations with a large/medium/small time scale dynamic duration of 0.6 s, 165 s, and16 min, respectively, the mechanism with which voltage suddenly changes when the load current changes abruptly is studied. Starting from the long time constant during which the dynamic performance takes effect, the control variable is used to analyze the double-layer charge. The influences of layer effect capacitance C, fuel oxidant delay time constant τe, and thermodynamic characteristics (temperature T) on the dynamic performance ( initial values of variables: C = 4 F, τe = 80 s, and T = 307.7 K) clarify the action intensities on different time scales. With the help of Matlab/Sumlink platform the simulation results are obtained and the correctness and effectiveness of the built model are verified. The simulation results show that the sudden change in voltage is due to the open circuit voltage and Ohmic polarization resistance, and the Ohmic resistance is dominant (the Ohmic overvoltage change value is 2 V, and the open circuit voltage change is 0.05 V), and the C pair dynamics on a small time scale (ms). The performance plays a leading role. Specifically, τe has a greater effect on the dynamic characteristics on a medium time scale (s), and T has a stronger effect on a large time scale (102–103 s). Based on the above deduction, a multi-time scale model of the battery is derived. The research provides the reference and theoretical support for subsequent battery energy management, evaluation of dynamic performance, and precise control.
-
Keywords:
- proton exchange membrane fuel cell /
- multi-time scale analysis analysis /
- dynamic response characteristics /
- load mutation
[1] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇 2022 电子测量技术 45 22Google Scholar
Wang J K, Li H, Pei Y F, Li X Y, Zhang X Y 2022 Elec. Mea. Tech. 45 22Google Scholar
[2] 曲炳旺, 陈会翠, 邢夏杰, 章桐 2017 同济大学学报: 自然科学版 45 110Google Scholar
Qu B W, Chen H C, Xing X J, Zhang T 2017 J. Tongji Univ.: Nat. Sci. Ed. 45 110Google Scholar
[3] Wang X D, Xu J L, Yan W M, Lee D J, Ay S 2011 Int. J. Heat Mass Transf. 54 2375Google Scholar
[4] Li H Y, Weng W C, Yan W M, Wang X D 2011 J. Power Sources 196 235Google Scholar
[5] Ceraolo M, Miulli C, Pozio A 2003 J. Power Sources 113 131Google Scholar
[6] Yan W M, Soong C Y, Chen F, Chu H S 2005 J. Power Sources 143 48Google Scholar
[7] Chugh S, Chaudhari C, Sonkar K, Sharma A, Kapur G S, Ramakumar S S V 2020 Int. J. Hydrog. 45 8866Google Scholar
[8] 皇甫宜耿, 任子俊, 张羽翔, 马睿 2020 电力电子技术 54 44Google Scholar
Huangfu Y G, Ren Z J, Zhang Y X, Ma R 2020 Pow. Elec. 54 44Google Scholar
[9] 肖燕, 常英杰, 张伟, 贾秋红 2018 电化学 24 166Google Scholar
Xiao Y, Chang Y J, Zhang W, Jia Q H 2018 J. Electrochem. 24 166Google Scholar
[10] 刘鹏程, 许思传 2021 化工进展 40 3172Google Scholar
Liu P C, Xu S J 2021 Chem. Ind. Eng. Prog. 40 3172Google Scholar
[11] Henning L B, Kevin S, Micchael D, Xin Y L, Amgad E, Michael W Thomas W, Brad R, Martha C 2020 Int. J. Hydrog. 45 861Google Scholar
[12] 李威尔, 孙超, 霍为炜, 龚国庆 2021 电池 51 238Google Scholar
Li W E, Su C, Huo W W, Gong G Q 2021 Battery 51 238Google Scholar
[13] 闫飞宇, 李伟卓, 杨卫卫, 何雅玲 2019 中国科学: 技术科学 49 391Google Scholar
Yan F Y, Li W Z, Yang W W, He Y L 2019 Sci. China Ser.: Technol. Sci 49 391Google Scholar
[14] 肖伟强 2021 电池 51 429
Xiao W Q 2021 Battery 51 429
[15] Amanda L A, Imene Y, Jussara F F, Lucas F E, Fernando T 2020 Int. J. Hydrog. 45 30870Google Scholar
[16] 柯超, 甘屹, 王胜佳, 何雅玲, 朱荣杰, 陈伟 2021 太阳能学报 42 488Google Scholar
Ke C, Gan Q, Wang S S, Zhu R J 2021 Acta Energ. Solaris Sin. 42 488Google Scholar
[17] Hashem M N, Wang C 2009 Modeling and Control of Fuel Cells: Distrbuted Generation Application (Hoboken: Wiley-IEEE Press) pp57–87
[18] Colleen S 2008 PEM Fuel Cell Modeling and Simulation Using Matlab (Amsterdam: Elsevier Press) pp99–125
[19] 戴海峰, 袁浩, 鱼乐, 魏学哲 2020 同济大学学报: 自然科学版 48 880Google Scholar
Dai H F, Yan H, Yu L, Wei X Z 2020 J. Tongji Univ. :Nat. Sci. Ed. 48 880Google Scholar
[20] 孙术发, 杨洁, 唐华林, 朱荣杰, 葛安华, 邢 涛, 马超 2019 哈尔滨工业大学学报 51 144Google Scholar
Sun S F, Yang J, Tang H L, Ge A H, Xing T, Ma C 2019 J. Harbin. Inst. Technol. 51 144Google Scholar
-
表 1 仿真参数值
Table 1. Simulation parameter values.
参数 数值 参数 数值 参数 数值 λe/Ω 0.00333 A/cm2 230 Pcathode/atm 1.0 τe/s 80.0 Mfc·Cfc/(J·K–1) 22000 初始温度Tinitial/K 307.7 N/个 48 Troom/K 307.7 J/(mA·cm–2) 5 h/(W·(m2·K)–1) 37.5 Panode/atm 1.5 电堆C/F 4.8 -
[1] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇 2022 电子测量技术 45 22Google Scholar
Wang J K, Li H, Pei Y F, Li X Y, Zhang X Y 2022 Elec. Mea. Tech. 45 22Google Scholar
[2] 曲炳旺, 陈会翠, 邢夏杰, 章桐 2017 同济大学学报: 自然科学版 45 110Google Scholar
Qu B W, Chen H C, Xing X J, Zhang T 2017 J. Tongji Univ.: Nat. Sci. Ed. 45 110Google Scholar
[3] Wang X D, Xu J L, Yan W M, Lee D J, Ay S 2011 Int. J. Heat Mass Transf. 54 2375Google Scholar
[4] Li H Y, Weng W C, Yan W M, Wang X D 2011 J. Power Sources 196 235Google Scholar
[5] Ceraolo M, Miulli C, Pozio A 2003 J. Power Sources 113 131Google Scholar
[6] Yan W M, Soong C Y, Chen F, Chu H S 2005 J. Power Sources 143 48Google Scholar
[7] Chugh S, Chaudhari C, Sonkar K, Sharma A, Kapur G S, Ramakumar S S V 2020 Int. J. Hydrog. 45 8866Google Scholar
[8] 皇甫宜耿, 任子俊, 张羽翔, 马睿 2020 电力电子技术 54 44Google Scholar
Huangfu Y G, Ren Z J, Zhang Y X, Ma R 2020 Pow. Elec. 54 44Google Scholar
[9] 肖燕, 常英杰, 张伟, 贾秋红 2018 电化学 24 166Google Scholar
Xiao Y, Chang Y J, Zhang W, Jia Q H 2018 J. Electrochem. 24 166Google Scholar
[10] 刘鹏程, 许思传 2021 化工进展 40 3172Google Scholar
Liu P C, Xu S J 2021 Chem. Ind. Eng. Prog. 40 3172Google Scholar
[11] Henning L B, Kevin S, Micchael D, Xin Y L, Amgad E, Michael W Thomas W, Brad R, Martha C 2020 Int. J. Hydrog. 45 861Google Scholar
[12] 李威尔, 孙超, 霍为炜, 龚国庆 2021 电池 51 238Google Scholar
Li W E, Su C, Huo W W, Gong G Q 2021 Battery 51 238Google Scholar
[13] 闫飞宇, 李伟卓, 杨卫卫, 何雅玲 2019 中国科学: 技术科学 49 391Google Scholar
Yan F Y, Li W Z, Yang W W, He Y L 2019 Sci. China Ser.: Technol. Sci 49 391Google Scholar
[14] 肖伟强 2021 电池 51 429
Xiao W Q 2021 Battery 51 429
[15] Amanda L A, Imene Y, Jussara F F, Lucas F E, Fernando T 2020 Int. J. Hydrog. 45 30870Google Scholar
[16] 柯超, 甘屹, 王胜佳, 何雅玲, 朱荣杰, 陈伟 2021 太阳能学报 42 488Google Scholar
Ke C, Gan Q, Wang S S, Zhu R J 2021 Acta Energ. Solaris Sin. 42 488Google Scholar
[17] Hashem M N, Wang C 2009 Modeling and Control of Fuel Cells: Distrbuted Generation Application (Hoboken: Wiley-IEEE Press) pp57–87
[18] Colleen S 2008 PEM Fuel Cell Modeling and Simulation Using Matlab (Amsterdam: Elsevier Press) pp99–125
[19] 戴海峰, 袁浩, 鱼乐, 魏学哲 2020 同济大学学报: 自然科学版 48 880Google Scholar
Dai H F, Yan H, Yu L, Wei X Z 2020 J. Tongji Univ. :Nat. Sci. Ed. 48 880Google Scholar
[20] 孙术发, 杨洁, 唐华林, 朱荣杰, 葛安华, 邢 涛, 马超 2019 哈尔滨工业大学学报 51 144Google Scholar
Sun S F, Yang J, Tang H L, Ge A H, Xing T, Ma C 2019 J. Harbin. Inst. Technol. 51 144Google Scholar
Catalog
Metrics
- Abstract views: 5720
- PDF Downloads: 117
- Cited By: 0