Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of NO content varaitaion in the lymphatic vessels under different outlet pressures by a lattice Boltzmann method

He Yi-Nan Zhang Qian-Yi Wei Hua-Jian Shi Juan

Citation:

Investigation of NO content varaitaion in the lymphatic vessels under different outlet pressures by a lattice Boltzmann method

He Yi-Nan, Zhang Qian-Yi, Wei Hua-Jian, Shi Juan
PDF
HTML
Get Citation
  • The lymphatic system is an important defense function system in the human body. It is also critical to humoral homeostasis. Local dysfunction will cause edema, immune deficiency, and a high incidence. There are intraluminal valves in the lymphatic system, which allows the lymph fluid to flow to the large veins and heart. It has three major immune functions. First, it can resist bacterial viruses and protect the human body from disease attacks. Secondly, it is supplemented by lymphocytes to remove the products produced by metabolism. In the end, The damaged organs and tissues are repaired by lymphocytes to restore normal physiological functions. The lymphatic system does not have the same pump as the heart of the blood circulatory system. The driving of lymph is mainly done by the spontaneous contraction of the lymphatics (the lung lymphatic system is compressed by the alveoli). The autonomic contraction cycle of lymphatic vessels is caused by the increase of Ca2+ in lymphocytes, and the contraction drives the fluid to produce shearing force. The shearing force produces nitric oxide synthase (eNOS) in lymphatic endothelial cells, and eNOS increases NO and increases NO. Decreasing Ca2+ relaxes lymphatic vessels, fluid shear rate decreases after lymphatic vessel relaxation, eNOS decreases, NO decreases, Ca2+ increases, lymphocytes contract, and a new cycle begins. It can be seen that the concentration of NO and its distribution play a key role in the contraction of lymphatic vessels. Obviously, export pressure affects the shear rate of fluid in the lymphatics, which in turn affects the concentration of NO and the contraction of lymphatic vessels. To investigate the effect of lymphatic outlet pressure on lymphatic vessel contraction, we established a lattice Boltzmann model to simulate the initial lymphatic vessels embedded in porous tissue and the collecting lymphatic vessels with two pairs of valves. The valve is the main source of NO. Once contraction begins, the contraction is spontaneous, self-sustaining, and the system exhibits non-linear dynamics. This model can reproduce NO and The interaction of Ca2+ and the spontaneous contraction of lymphatic vessels, and the distribution of NO under different outlet pressures and their average values were studied.
      Corresponding author: Shi Juan, shijuan@guet.edu.cn
    [1]

    Louveau A, Smirnov I, Keyes T J, Eccles J D, Rouhani S J, Peske J D, Derecki N C, Castle D, Mandell J W, Lee K S, Harris T H, Kipnis J 2015 Nature 523 377

    [2]

    Margaris K N, Black R A 2012 J. R. Soc. Interface 9 601Google Scholar

    [3]

    Macdonald A J, Arkill K P, Tabor G R, McHale N G, Winlove C P 2008 Am. J. Physiol. Heart C. 295 305Google Scholar

    [4]

    张立民 2012 ATP敏感性钾通道在一氧化氮调节失血性休克大鼠离体淋巴管泵功能中的作用 (张家口: 河北北方学院)

    Zhang L M 2012 Role of ATP-Sensitive Potassium Channels in Nitric Oxide in Regulating the Function of Isolated Lymphatic Pump in Hemorrhagic Shock(Zhangjiakou: Hebei North University) (in Chinese)

    [5]

    秦立鹏, 牛春雨, 赵自刚 2011 生理科学进展 42 237

    Qin L P, Niu C Y, Zhao Z G 2011 Advances in Physiological Sciences 42 237

    [6]

    Kunert C, Baish J W, Liao S, Padera T P, Munn L L 2015 PNAS 112 10938Google Scholar

    [7]

    Baish J W, Kunert C, Padera T P, Munn LL 2016 PLoS Comput. Biol. 12 1005

    [8]

    赵彤彤 2018 多孔介质含天然气水合物多相流动LBM模拟 (太原: 太原理工大学)

    Zhao T T 2018 LBM Simulation of Multiphase Flow of Natural Gas Hydrate in Porous Media (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [9]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [10]

    Li H B, Mei Y M, Maimon N, Padera T P, Baish J W, Munn L L 2019 SCIENTIFICREPORTS 9 2045

    [11]

    Chen, Chen, Martnez, Matthaeus 1991 Phys. Rev. Lett. 67 27

    [12]

    Qian Y H, D’HumièresD, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [13]

    Sukop M C, ThorneJr D T2010 Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Berlin: Springer Publishing Company) p36

    [14]

    Pujol F, Hodgson T, Martinezcorral I, Prats A C, Devenport D, Takeichi M, Genot E, Mäkinen T, Francis-West P, Garmy-Susini B, Tatin F 2017 Arterioscl. Thromb. Vas. Biol. 37 1732Google Scholar

    [15]

    Scallan J P, Davis M J 2013 J. Physiol. 591 250

    [16]

    Kawai Y, Yokoyama Y, Kaidoh M 2010 Am. J. Physiol. 298 647Google Scholar

    [17]

    Ladd A J C, Verberg R 2001 J. Stat. Phys. 104 1191Google Scholar

    [18]

    He X, Doolen G 1997 J. Comput. Phys. 134 306Google Scholar

    [19]

    H Glenn B, Olga Yu G, Zawieja D C 2011 Ame. J. Physiol. Heart C. 301 1897Google Scholar

  • 图 1  D2 Q9晶格玻尔兹曼模型的微观速度

    Figure 1.  Microscopic velocity of D2 Q9 lattice Boltzmann model.

    图 2  反向弹回示意图

    Figure 2.  Bounceback.

    图 3  淋巴管段示意图

    Figure 3.  Lymphatic section.

    图 4  静止状态下淋巴管瓣膜

    Figure 4.  The lymphatic valves at rest.

    图 5  t = 2.296 s时, NO浓度分布图

    Figure 5.  t = 3.003 s, NO concentration distribution map.

    图 6  NO平均浓度与压强差关系图

    Figure 6.  Relationship between NO average concentration and pressure difference.

    表 1  Ca2+与NO的化学参数

    Table 1.  Chemical parameters of Ca2+ and NO.

    参数单位数值
    NO${D_{{\rm{NO}}}}$cm2/s1.2 × 10–4
    $K_{{\rm{NO}}}^ - $s–13.7594
    $K_{{\rm{NO}}}^ + $无量纲400
    Ca2+${D_{{\rm{Ca}}}}$cm2/s6.5 × 10–6
    $K_{{\rm{Ca}}}^{-}$s–137.6
    $K_{{\rm{Ca}}}^{+}$s–11.2
    $K_\delta ^ + $s–115038
    ${C_{{\rm{th}}}}$无量纲0.015
    ${R_{{\rm{Ca}}}}$cm0.005
    ${K_{{\rm{Ca}}, {\rm{NO}}}}$无量纲5.3
    h无量纲0.03
    DownLoad: CSV

    表 2  淋巴管与瓣膜参数

    Table 2.  Parameters of Lymphatic and valve.

    参数单位数值
    淋巴管${k_{\rm{M}}}$${\rm{dynes}}$7.6 × 10–5
    ${k_{\rm{E}}}$${\rm{dynes}}/{{\rm{cm}}^{\rm{2}}}$4.52
    ${k_{\rm{B}}}$${\rm{dynes}} /{{\rm{cm}}^2}$9045
    ${k_{\rm{r}}}$dynes·s/cm4.8 × 10–9
    ${k_{{\rm{NO}}}}$无量纲1
    ${R_{\rm{l}}}$cm0.003
    ${R_{\rm{0}}}$cm0.005
    瓣膜$k_{\rm{B}}^\nu $dynes /cm20—0.2
    $k_{\rm{E}}^\nu $dynes /cm29.0 × 10–4
    $k_{\rm{r}}^\nu $dynes /cm20.0091
    Acm–11500
    $\varDelta $cm2 × 10–4
    DownLoad: CSV

    表 3  出口压强高于入口压强时正压力差

    Table 3.  Positive pressure when outlet pressure is higher than inlet pressure.

    正压力差
    ${{\rho _{{\rm{out}}}}} /$g·cm–31.00201.00151.00101.00081.00061.00041.0002
    ${\Delta \rho }/$g·cm–30.00200.00150.00100.00080.00060.00040.0002
    ${\Delta P} /$g·cm–1·s–260.345.22530.1524.1218.0912.066.03
    DownLoad: CSV

    表 4  出口压强低于入口压强时负压力差

    Table 4.  Negative pressure when outlet pressure is lower than inlet pressure.

    负压力差
    ${\rho _{{\rm{out}}}}/$g·cm–31.00000.999980.999960.99980.9996
    $\Delta \rho /$g·cm–30–0.00002–0.00004–0.0002–0.0004
    $\Delta P/$g·cm–1·s–20–0.603–1.206–6.03–12.06
    DownLoad: CSV
  • [1]

    Louveau A, Smirnov I, Keyes T J, Eccles J D, Rouhani S J, Peske J D, Derecki N C, Castle D, Mandell J W, Lee K S, Harris T H, Kipnis J 2015 Nature 523 377

    [2]

    Margaris K N, Black R A 2012 J. R. Soc. Interface 9 601Google Scholar

    [3]

    Macdonald A J, Arkill K P, Tabor G R, McHale N G, Winlove C P 2008 Am. J. Physiol. Heart C. 295 305Google Scholar

    [4]

    张立民 2012 ATP敏感性钾通道在一氧化氮调节失血性休克大鼠离体淋巴管泵功能中的作用 (张家口: 河北北方学院)

    Zhang L M 2012 Role of ATP-Sensitive Potassium Channels in Nitric Oxide in Regulating the Function of Isolated Lymphatic Pump in Hemorrhagic Shock(Zhangjiakou: Hebei North University) (in Chinese)

    [5]

    秦立鹏, 牛春雨, 赵自刚 2011 生理科学进展 42 237

    Qin L P, Niu C Y, Zhao Z G 2011 Advances in Physiological Sciences 42 237

    [6]

    Kunert C, Baish J W, Liao S, Padera T P, Munn L L 2015 PNAS 112 10938Google Scholar

    [7]

    Baish J W, Kunert C, Padera T P, Munn LL 2016 PLoS Comput. Biol. 12 1005

    [8]

    赵彤彤 2018 多孔介质含天然气水合物多相流动LBM模拟 (太原: 太原理工大学)

    Zhao T T 2018 LBM Simulation of Multiphase Flow of Natural Gas Hydrate in Porous Media (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [9]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [10]

    Li H B, Mei Y M, Maimon N, Padera T P, Baish J W, Munn L L 2019 SCIENTIFICREPORTS 9 2045

    [11]

    Chen, Chen, Martnez, Matthaeus 1991 Phys. Rev. Lett. 67 27

    [12]

    Qian Y H, D’HumièresD, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [13]

    Sukop M C, ThorneJr D T2010 Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Berlin: Springer Publishing Company) p36

    [14]

    Pujol F, Hodgson T, Martinezcorral I, Prats A C, Devenport D, Takeichi M, Genot E, Mäkinen T, Francis-West P, Garmy-Susini B, Tatin F 2017 Arterioscl. Thromb. Vas. Biol. 37 1732Google Scholar

    [15]

    Scallan J P, Davis M J 2013 J. Physiol. 591 250

    [16]

    Kawai Y, Yokoyama Y, Kaidoh M 2010 Am. J. Physiol. 298 647Google Scholar

    [17]

    Ladd A J C, Verberg R 2001 J. Stat. Phys. 104 1191Google Scholar

    [18]

    He X, Doolen G 1997 J. Comput. Phys. 134 306Google Scholar

    [19]

    H Glenn B, Olga Yu G, Zawieja D C 2011 Ame. J. Physiol. Heart C. 301 1897Google Scholar

  • [1] Feng Jing-Sen, Min Jing-Chun. Lattice Boltzmann method simulation of two-phase flow in horizontal channel. Acta Physica Sinica, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [2] Zhang Qian-Yi, Wei Hua-Jian, Li Hua-Bing. Multi-segment lymphatic vessel model based on lattice Boltzmann method. Acta Physica Sinica, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [3] He Yu-Bo, Tang Xian-Hua, Lin Xiao-Yan. Numerical simulation of a class of FitzHugh-Nagumo systems based on the lattice Boltzmann method. Acta Physica Sinica, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [4] Jiang Yan-Hua, Chen Jia-Min, Shi Juan, Zhou Jin-Yang, Li Hua-Bing. Triangle wave pulsating flow effect on thrombus simulated by the lattice Boltmann method. Acta Physica Sinica, 2016, 65(7): 074701. doi: 10.7498/aps.65.074701
    [5] Liu Fei-Fei, Wei Shou-Shui, Wei chang-Zhi, Ren Xiao-Fei. Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type. Acta Physica Sinica, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [6] Ma Yong-Peng, Zhao Xiao-Li, Liu Ya-Wei, Xu Long-Quan, Kang Xu, Yang Ke, Yan Shuai, Zhu Lin-Fan. Investigation of Compton profiles of NO and C2H2. Acta Physica Sinica, 2015, 64(15): 153302. doi: 10.7498/aps.64.153302
    [7] Chen Jia-Min, Jiang Yan-Hua, Shi Juan, Zhou Jin-Yang, Li Hua-Bing. Pulsation effect on thrombus in a bifurcation pipe by the lattice Boltzmann method. Acta Physica Sinica, 2015, 64(14): 144701. doi: 10.7498/aps.64.144701
    [8] Liu Fei-Fei, Wei Shou-Shui, Wei Chang-Zhi, Ren Xiao-Fei. Use of velocity source immersed boundary-lattice Boltzmann method to study bionic micro-fluidic driving model. Acta Physica Sinica, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [9] Zhou Jin-Yang, Shi Juan, Chen Jia-Min, Li Hua-Bing. Effect of pulsation on thrombus studied by the lattice Boltzmann method. Acta Physica Sinica, 2014, 63(19): 194701. doi: 10.7498/aps.63.194701
    [10] Shi Juan, Wang Li-Long, Zhou Jin-Yang, Xue Ze, Li Hua-Bing, Wang Jian, Tan Hui-Li. Study on the blood embolism in the bifurcation pipe by the lattice Boltzmann method. Acta Physica Sinica, 2014, 63(1): 014702. doi: 10.7498/aps.63.014702
    [11] Sun Dong-Ke, Xiang Nan, Chen Ke, Ni Zhong-Hua. Lattice Boltzmann modeling of particle inertial migration in a curved channel. Acta Physica Sinica, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [12] Liu Cheng, Bai Wen-Guang, Zhang Peng, Sun You-Wen, Si Fu-Qi. The inverse method of carbon monoxide from satellite measurement and the result analysis. Acta Physica Sinica, 2013, 62(3): 030704. doi: 10.7498/aps.62.030704
    [13] Xue Ze, Shi Juan, Wang Li-Long, Zhou Jin-Yang, Tan Hui-Li, Li Hua-Bing. The lattice Boltzmann simulation of suspended particle movement in a tapered tube. Acta Physica Sinica, 2013, 62(8): 084702. doi: 10.7498/aps.62.084702
    [14] Deng Lun-Hua, Li Chuan-Liang, Zhu Yuan-Yue, He Wen-Yan, Chen Yang-Qin. The absorption spectrum study of the (4, 0) band in the b4Σ--a4Πi system of NO. Acta Physica Sinica, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [15] Zhou Feng-Mao, Sun Dong-Ke, Zhu Ming-Fang. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [16] Shi Juan, Li Hua-Bing, Wang Wen-Xia, Qiu Bing. Lattice Boltzmann simulation of surface hydrophobicity with nano-structure. Acta Physica Sinica, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [17] Shi Juan, Li Jian, Qiu Bing, Li Hua-Bing. Lattice Boltzmann simulation of particles moving in a vortex flow. Acta Physica Sinica, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [18] Deng Min-Yi, Shi Juan, Li Hua-Bing, Kong Ling-Jiang, Liu Mu-Ren. Lattice Boltzmann method for the production and evolution of spiral waves. Acta Physica Sinica, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [19] Wang Yang, Meng Liang. Effects of the oxygen vacancy on NO adsorption at the TiO2 surface. Acta Physica Sinica, 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
    [20] Xu You-Sheng, Li Hua-Bing, Fang Hai-Ping, Huang Guo-Xiang. Lattice Boltzmann simulation for nonlinear flow in porous media with coupling reaction. Acta Physica Sinica, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
Metrics
  • Abstract views:  6219
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2019
  • Accepted Date:  09 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回