Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of magnetic force and potential energy function of multi-stable cantilever beam with two magnets

Sun Shuai-Ling Leng Yong-Gang Zhang Yu-Yang Su Xu-Kun Fan Sheng-Bo

Citation:

Analysis of magnetic force and potential energy function of multi-stable cantilever beam with two magnets

Sun Shuai-Ling, Leng Yong-Gang, Zhang Yu-Yang, Su Xu-Kun, Fan Sheng-Bo
PDF
HTML
Get Citation
  • Multi-stable structures are deformable structures that can have large deformations under external excitation. Generally, multi-stable structures have at least two stable points and can jump from one to another. Because multi-stable structures have excellent nonlinear characteristics, they are widely used in many fields. In the field of energy harvesting, multi-stable structures are often obtained by means of cantilever beams. This is because the cantilever beam is simple to make, low in stiffness, and high in sensitivity, and can undergo large deformations under small excitation forces. Besides, by simply sticking magnets on its free end and its outside, various kinds of multi-stable characteristics can be constructed, such as bi-stable characteristics, tri-stable characteristics, quad-stable characteristics, etc. Furthermore, the cantilever beam and the magnet at its end can generally be simplified into an equivalent mass-spring-damping mechanical model, which is convenient for the analysis of system potential function and dynamics.In recent years, many vibration energy harvesters proposed by researchers have adopted the conventional multi-stable cantilever beams, which involve many bi-stable cantilever beams and tri-stable cantilever beams. However, if the cantilever beams need to introduce more stable points, the number of magnets required will also increase accordingly. As a result, the adjustable parameters are continuously increasing, which increases the complexity of structural optimization and the tediousness of dynamic analysis. In order to make up for the shortcomings of conventional multi-stable cantilever beams, in this paper we present a multi-stable cantilever beam with only two magnets, a ring magnet and a rectangular magnet. By changing the size of the rectangular magnet and the distance between the two magnets, this cantilever beam can have mono-stable, bi-stable, tri-stable or quad-stable characteristics. This multi-stable cantilever beam greatly simplifies the complexity of the system design, dynamic analysis, debugging and installation, and provides new ideas and technical methods for the design and application of the vibration energy harvester realized by the multi-stable cantilever beam.In this paper, firstly, the magnetizing current method is used to analyze the magnetic induction intensity of the ring magnet at any point in the three-dimensional coordinate system, and the simulation and experimental results prove its correctness. Secondly, two methods of calculating the position of the rectangular magnet at the free end of the cantilever beam are compared. Thirdly, the magnetic force between the ring magnet and the rectangular magnet is calculated and verified in experiment. Fourthly, the system potential functions under different structural parameters are analyzed and it is found that the change of the number of the stable points of the system is caused by the change of the magnetic force between the two magnets. Finally, the correctness of the number of stable points of the system under different parameters is verified in experiment and by dynamic simulations.
      Corresponding author: Leng Yong-Gang, leng_yg@tju.edu.cn
    [1]

    Daynes S, Weaver P M 2012 Smart Mater. Struct. 21 105019Google Scholar

    [2]

    Barbarino S, Bilgen O, Ajaj R M, Friswell M I, Inman D J 2011 J. Intel. Mat. Syst. Str. 22 823Google Scholar

    [3]

    姜伟红 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Jiang W H 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [4]

    Diaconu C G, Weaver P M, Mattioni F 2008 Thin Wall. Struct. 46 689Google Scholar

    [5]

    Daynes S, Nall S J, Weaver P M, Potter K D, Margaris P, Mellor P H 2010 J. Aircraft 47 334Google Scholar

    [6]

    沙山克·普利亚, 丹尼尔·茵曼(黄见秋, 黄庆安, 译) 2010 能量收集技术 (南京: 东南大学出版社) 第 1—4 页

    Priya S, Inman D J (Translated by Huang J Q, Huang Q A) 2010 Energy Harvesting Technologies (Nanjing: Southeast University Press) pp1–4 (in Chinese)

    [7]

    卢有为, 单小彪, 袁江波, 谢涛 2010 机械设计与制造 5 118Google Scholar

    Lu Y W, Shan X B, Yuan J B, Xie T 2010 Machinery Design & Manufacture 5 118Google Scholar

    [8]

    王治平, 刘俊标, 姜楠, 李博 2010 压电与声光 32 763

    Wang Z P, Liu J B, Jiang N, Li B 2010 Piezoelectrics & Acoustooptics 32 763

    [9]

    Challa V R, Prasad M G, Fisher F T 2009 Smart Mater. Struct. 18 095029Google Scholar

    [10]

    陈仲生, 杨拥民 2011 物理学报 60 074301Google Scholar

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301Google Scholar

    [11]

    Podder P, Amann A, Roy S 2015 Sensor Actuat. A-Phys. 227 39Google Scholar

    [12]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003Google Scholar

    [13]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [14]

    Zhou S X, Cao J Y, Inman D J, Lin J, Liu S S, Wang Z Z 2014 Appl. Energy 133 33Google Scholar

    [15]

    Deng W, Wang Y 2017 Mech. Syst. Signal Pr. 85 591Google Scholar

    [16]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131Google Scholar

    [17]

    DuToit N E, Wardle B L 2005 Integr. Ferroelectri. 45 1126

    [18]

    Roundy S, Wright P K 2004 Smart Mater. Struct. 13 1131Google Scholar

    [19]

    Agashe J S, Arnold D P 2008 J. Phys. D: Appl. Phys. 41 105001Google Scholar

    [20]

    张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波 2017 物理学报 66 220502Google Scholar

    Zhang Y Y, Leng Y G, Tan D, Liu J J, Fan S B 2017 Acta Phys. Sin. 66 220502Google Scholar

    [21]

    谭丹, 冷永刚, 范胜波, 高毓璣 2015 物理学报 64 060502Google Scholar

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502Google Scholar

    [22]

    Tan D, Leng Y G, Gao Y J 2015 Eur. Phys. J.: Spec. Top. 224 2839Google Scholar

  • 图 1  双磁铁多稳态悬臂梁 (a) 三稳状态; (b) 四稳状态

    Figure 1.  Multi-stable cantilever beam with two magnets: (a) The state concluding three stable points; (b) the state concluding four stable points.

    图 2  空间坐标系及圆形实心磁铁的磁化电流示意图

    Figure 2.  Schematic diagram of there-dimension coordinate system and magnetizing currents on the surface of the circular magnet.

    图 3  磁感应强度Bi, Bjx的变化关系 (a) Bix的变化, y = 6.0 mm; (b) Bjx的变化, y = 6.0 mm; (c) Bix的变化, y = 10.0 mm; (d) Bjx的变化, y = 10.0 mm

    Figure 3.  The curves of Bi and Bj varying with x: (a) The curves of Bi varying with x, y = 6.0 mm; (b) the curves of Bj varying with x, y = 6.0 mm; (c) the curves of Bi varying with x, y = 10.0 mm; (d) the curves of Bj varying with x, y = 10.0 mm.

    图 4  磁感应强度测量系统 (a)Bi测量; (b)Bj测量

    Figure 4.  Magnetic induction intensity measurement system: (a) The measurement of Bi; (b) the measurement of Bj.

    图 5  悬臂梁弯曲状态及其矩形磁铁的坐标位置

    Figure 5.  The position of the rectangular magnet in coordinate system when the cantilever beam is bent.

    图 6  梁自由端磁铁位置的两种计算方法

    Figure 6.  Two kinds of calculation of the position of the magnet at the free end of the beam.

    图 7  位移测量系统

    Figure 7.  Displacement measuring device.

    图 8  矩形磁铁尺寸及磁化电流示意图

    Figure 8.  Schematic diagram of the size of the rectangular magnet and the magnetizing currents on the surface of the rectangular magnet.

    图 9  Fi, FjxC的变化关系 (a) FixC的变化关系, d = 5.8 mm; (b)FjxC的变化关系, d = 5.8 mm; (c) FixC的变化关系, d = 8.0 mm; (d) FjxC的变化关系, d = 8.0 mm

    Figure 9.  The curves of Fi and Fj varying with xC: (a) The curves of Fi varying with xC, d = 5.8 mm; (b) the curves of Fj varying with xC, d = 5.8 mm; (c) the curves of Fi varying with xC, d = 8.0 mm; (d) the curves of Fj varying with xC, d = 8.0 mm.

    图 10  磁力测量系统 (a) Fi 测量; (b) Fj测量

    Figure 10.  Magnetic force measurement system: (a) The measurement of Fi; (b) the measurement of Fj.

    图 11  矩形磁铁(10 mm × 10 mm × 3 mm)与环形磁铁(40 mm (φ1) × 20 mm (φ2) × 3 mm)作用的系统势函数 (a)系统势函数三维图; (b)磁铁间距分别为d = 3 mm, d = 6 mm, d = 20 mm时系统势函数二维图

    Figure 11.  The system potential function varying with d when the size of the rectangular magnet is 10 mm × 10 mm × 3 mm and the ring magnet is 40 mm (φ1) × 20 mm (φ2) × 3 mm: (a) Three dimensional diagram of system potential function; (b) two dimensional diagram of system potential function when d = 3 mm, d = 6 mm and d = 20 mm.

    图 12  系统势函数随d的变化  (a)矩形磁铁尺寸为 20 mm × 20 mm × 3 mm; (b) 矩形磁铁尺寸为 30 mm × 30 mm × 3 mm

    Figure 12.  The system potential function varying with d: (a) The size of the rectangular magnet is 20 mm × 20 mm × 3 mm; (b) the size of the rectangular magnet is 30 mm × 30 mm × 3 mm.

    图 13  磁铁间距d = 6 mm, 不同矩形磁铁尺寸与环形磁铁(40 mm(φ1) × 20 mm(φ2) × 3 mm)作用的系统势函数 (a) 系统势函数三维图; (b) 矩形磁铁长度分别为lA = 3 mm, lA = 10 mm, lA = 20 mm, lA = 30 mm, lA = 45 mm时系统势函数二维图

    Figure 13.  The system potential function varying with lA when d = 6 mm and the size of the ring magnet is 40 mm(φ1) × 20 mm(φ2) × 3 mm: (a) Three dimensional diagram of system potential function; (b) two dimensional diagram of system potential function when lA = 3 mm, lA = 10 mm, lA = 20 mm, lA = 30 mm and lA = 45 mm.

    图 14  (a) lA = 20 mm和lA = 30 mm时, W2W3xC的变化关系;(b) lA = 20 mm和lA = 30 mm时, FixC的变化

    Figure 14.  (a) The curves of W2 and W3 varying with xC when lA = 20 mm and lA = 30 mm; (b) the curves of Fi varying with xC when lA = 20 mm and lA = 30 mm.

    图 15  三稳结构 (a)中稳态点; (b)上稳态点

    Figure 15.  The structure concluding three stable points: (a) The middle state point; (b) the upper stable point.

    图 16  四稳结构 (a)上1稳态点; (b)上2稳态点

    Figure 16.  The structure concluding four stable points: (a) The upper stable point 1; (b) the upper state point 2.

    图 17  三稳振动响应 (a)时域图; (b)相位图

    Figure 17.  The vibration response of the tri-stable cantilever beam: (a) The time domain chart; (b) the phase chart.

    图 18  四稳振动响应 (a)时域图; (b)相位图

    Figure 18.  The vibration response of the quad-stable cantilever beam: (a) The time domain chart; (b) the phase chart.

    表 1  悬臂梁、矩形磁铁、环形磁铁的材料和参数

    Table 1.  Materials and parameters of cantilever beam, rectangular magnet, and ring magnet.

    材料参数数值
    悬臂梁材料: 矽钢弹性模量EC/GPa200
    密度ρC/kg·m–37700
    长度lC/mm60
    宽度wC/mm10
    厚度tC/mm0.15
    矩形磁铁材料:
    Nd2Fe14B (牌号N35)
    密度ρA/kg·m–37500
    长度lA/mm10
    宽度wA/mm10
    厚度tA/mm3
    磁化强度MA/A·m–16 × 105
    环形磁铁材料:
    Nd2Fe14B (牌号N35)
    密度ρB/kg·m–37500
    厚度tB/mm3
    外环直径φ1/mm40
    内环直径φ2/mm20
    磁化强度MB/A·m–16 × 105
    真空磁导率μ0/N·A–24π × 10–7
    DownLoad: CSV

    表 2  实验器材及其型号

    Table 2.  Experimental equipments and models.

    实验器材型号
    高斯计BST100
    推拉式测力计HF-5
    激光位移传感器LK-G5001V
    DownLoad: CSV
  • [1]

    Daynes S, Weaver P M 2012 Smart Mater. Struct. 21 105019Google Scholar

    [2]

    Barbarino S, Bilgen O, Ajaj R M, Friswell M I, Inman D J 2011 J. Intel. Mat. Syst. Str. 22 823Google Scholar

    [3]

    姜伟红 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Jiang W H 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [4]

    Diaconu C G, Weaver P M, Mattioni F 2008 Thin Wall. Struct. 46 689Google Scholar

    [5]

    Daynes S, Nall S J, Weaver P M, Potter K D, Margaris P, Mellor P H 2010 J. Aircraft 47 334Google Scholar

    [6]

    沙山克·普利亚, 丹尼尔·茵曼(黄见秋, 黄庆安, 译) 2010 能量收集技术 (南京: 东南大学出版社) 第 1—4 页

    Priya S, Inman D J (Translated by Huang J Q, Huang Q A) 2010 Energy Harvesting Technologies (Nanjing: Southeast University Press) pp1–4 (in Chinese)

    [7]

    卢有为, 单小彪, 袁江波, 谢涛 2010 机械设计与制造 5 118Google Scholar

    Lu Y W, Shan X B, Yuan J B, Xie T 2010 Machinery Design & Manufacture 5 118Google Scholar

    [8]

    王治平, 刘俊标, 姜楠, 李博 2010 压电与声光 32 763

    Wang Z P, Liu J B, Jiang N, Li B 2010 Piezoelectrics & Acoustooptics 32 763

    [9]

    Challa V R, Prasad M G, Fisher F T 2009 Smart Mater. Struct. 18 095029Google Scholar

    [10]

    陈仲生, 杨拥民 2011 物理学报 60 074301Google Scholar

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301Google Scholar

    [11]

    Podder P, Amann A, Roy S 2015 Sensor Actuat. A-Phys. 227 39Google Scholar

    [12]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003Google Scholar

    [13]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [14]

    Zhou S X, Cao J Y, Inman D J, Lin J, Liu S S, Wang Z Z 2014 Appl. Energy 133 33Google Scholar

    [15]

    Deng W, Wang Y 2017 Mech. Syst. Signal Pr. 85 591Google Scholar

    [16]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131Google Scholar

    [17]

    DuToit N E, Wardle B L 2005 Integr. Ferroelectri. 45 1126

    [18]

    Roundy S, Wright P K 2004 Smart Mater. Struct. 13 1131Google Scholar

    [19]

    Agashe J S, Arnold D P 2008 J. Phys. D: Appl. Phys. 41 105001Google Scholar

    [20]

    张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波 2017 物理学报 66 220502Google Scholar

    Zhang Y Y, Leng Y G, Tan D, Liu J J, Fan S B 2017 Acta Phys. Sin. 66 220502Google Scholar

    [21]

    谭丹, 冷永刚, 范胜波, 高毓璣 2015 物理学报 64 060502Google Scholar

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502Google Scholar

    [22]

    Tan D, Leng Y G, Gao Y J 2015 Eur. Phys. J.: Spec. Top. 224 2839Google Scholar

  • [1] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [2] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [3] Wu Juan-Juan, Leng Yong-Gang, Qiao Hai, Liu Jin-Jun, Zhang Yu-Yang. Mechanism of a nonlinear bistable piezoelectric cantilever beam under narrow-band random excitations and its energy harvesting. Acta Physica Sinica, 2018, 67(21): 210502. doi: 10.7498/aps.67.20180072
    [4] Zhang Yu-Yang, Leng Yong-Gang, Tan Dan, Liu Jin-Jun, Fan Sheng-Bo. Accurate analysis of magnetic force of bi-stable cantilever vibration energy harvesting system with the theory of magnetizing current. Acta Physica Sinica, 2017, 66(22): 220502. doi: 10.7498/aps.66.220502
    [5] Du Chao-Fan, Zhang Ding-Guo. A meshfree method based on point interpolation for dynamic analysis of rotating cantilever beams. Acta Physica Sinica, 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [6] Tan Dan, Leng Yong-Gang, Fan Sheng-Bo, Gao Yu-Ji. Magnetic force of piezoelectric cantilever energy harvesting system with an externally applied magnetic field based on magnetizing current method. Acta Physica Sinica, 2015, 64(6): 060502. doi: 10.7498/aps.64.060502
    [7] Fan Ji-Hua, Zhang Ding-Guo. Bezier interpolation method for the dynamics of rotating flexible cantilever beam. Acta Physica Sinica, 2014, 63(15): 154501. doi: 10.7498/aps.63.154501
    [8] Gao Yu-Ji, Leng Yong-Gang, Fan Sheng-Bo, Lai Zhi-Hui. Studies on vibration response and energy harvesting of elastic-supported bistable piezoelectric cantilever beams. Acta Physica Sinica, 2014, 63(9): 090501. doi: 10.7498/aps.63.090501
    [9] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [10] Ge Wei-Kuan, Xue Yun, Lou Zhi-Mei. Generalized gradient representation of holonomic mechanical systems. Acta Physica Sinica, 2014, 63(11): 110202. doi: 10.7498/aps.63.110202
    [11] Fang Jian-Shi, Zhang Ding-Guo. Analyses of rigid-flexible coupling dynamic properties of a rotating internal cantilever beam. Acta Physica Sinica, 2013, 62(4): 044501. doi: 10.7498/aps.62.044501
    [12] Zhou Nai-Gen, Hu Qiu-Fa, Xu Wen-Xiang, Li Ke, Zhou Lang. A comparative study of different potentials for molecular dynamics simulations of melting process of silicon. Acta Physica Sinica, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [13] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [14] Chen Zhong-Sheng, Yang Yong-Min. Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams. Acta Physica Sinica, 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [15] Chen Yu-Xiang, Xie Guo-Feng, Ma Ying, Zhou Yi-Chun. Molecular-dynamics simulation of the structure and elastic constants of barium titanium. Acta Physica Sinica, 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [16] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] SUN JIU-XUN. EXACTLY SOLVABLE POTENTIAL WITH FOUR PARAMETERS FOR DIATOMIC MOLECULES. Acta Physica Sinica, 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [18] LIU CHANG-QING, JIN ZHU-JING, LI MEI-SHUAN, HUHE JI-FU, WU WEI-TAO. CRITICAL CRACKING AND DAMAGE MODE OF TITANIUM NITRIDE FILMS. Acta Physica Sinica, 1992, 41(7): 1137-1142. doi: 10.7498/aps.41.1137
    [19] TANG AU-CHIN, CHEN SIH-YUAN. POTENTIAL FUNCTIONS OF RESTRICTED INTERNAL ROTATIONS OF MOLECULES. Acta Physica Sinica, 1962, 18(3): 143-158. doi: 10.7498/aps.18.143
    [20] Hu Hai-chang. ON THE THEORY OF UNIFORMLY LOADED ANISOTROPIC CANTILEVER BEAMS. Acta Physica Sinica, 1956, 12(4): 339-349. doi: 10.7498/aps.12.339
Metrics
  • Abstract views:  8811
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2019
  • Accepted Date:  15 April 2020
  • Available Online:  09 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回