Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics

Xing Jie Tan Zhi Zheng Ting Wu Jia-Gang Xiao Ding-Quan Zhu Jian-Guo

Citation:

Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics

Xing Jie, Tan Zhi, Zheng Ting, Wu Jia-Gang, Xiao Ding-Quan, Zhu Jian-Guo
PDF
HTML
Get Citation
  • Due to excellent piezoelectric properties and electromechanical coupling properties, lead-based piezoelectric ceramics represented by lead zirconate titanate Pb(ZrxTi1–x)O3 (PZT) are widely used in science and technology, industry, military and daily life. However, the content of Pb in PZT-based ceramics exceeds 60% (mass ratio), which will cause serious damage to human ecological environment in the process of their production, use and waste treatment. Therefore, the development of lead-free piezoelectric ceramics has become one of the hot research spots. Potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) lead-free piezoelectric ceramics are considered as one of the most promising material systems to substitute for lead-based piezoelectric ceramics because of their good piezoelectric properties and higher Curie temperature. Through many years of researches, the piezoelectric properties of modified KNN based lead-free piezoelectric ceramics have approached to or even exceeded those of some lead-based piezoelectric ceramics. Combining with our relevant work, we comprehensively review the research progress of high piezoelectric activity of KNN based lead-free piezoelectric ceramics, especially focus on the research progress of high-performance potassium sodium niobate lead-free piezoelectric ceramics, preparation technology and related theoretical mechanisms. The future research direction and prospect of KNN-based lead-free piezoelectric ceramics are also presented.
      Corresponding author: Zhu Jian-Guo, nic0400@scu.edu.cn
    [1]

    Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar

    [2]

    Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar

    [3]

    Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar

    [4]

    Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar

    [5]

    Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [6]

    Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar

    [7]

    Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar

    [8]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [9]

    Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar

    [10]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [11]

    Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [12]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [13]

    Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar

    [14]

    Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar

    [15]

    Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar

    [16]

    Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar

    [17]

    Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar

    [18]

    Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar

    [19]

    Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar

    [20]

    Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar

    [21]

    Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar

    [22]

    Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar

    [23]

    Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar

    [24]

    Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar

    [25]

    Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar

    [26]

    Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar

    [27]

    Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar

    [28]

    Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar

    [29]

    Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar

    [30]

    Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar

    [31]

    Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar

    [32]

    Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar

    [33]

    Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar

    [34]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar

    [35]

    Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar

    [36]

    Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar

    [37]

    Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar

    [38]

    Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar

    [39]

    Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar

    [40]

    Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar

    [41]

    Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar

    [42]

    Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar

    [43]

    Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar

    [44]

    Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar

    [45]

    Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar

    [46]

    Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar

    [47]

    Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar

    [48]

    Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar

    [49]

    Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar

    [50]

    Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar

    [51]

    Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar

    [52]

    Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar

    [53]

    Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar

    [54]

    Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar

    [55]

    Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar

    [56]

    López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar

    [57]

    Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar

    [58]

    Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar

    [59]

    Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar

    [60]

    Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar

    [61]

    Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar

    [62]

    Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar

    [63]

    Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar

    [64]

    Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar

    [65]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar

    [66]

    Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar

    [67]

    Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar

    [68]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [69]

    Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar

    [70]

    Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar

    [71]

    Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar

    [72]

    Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar

    [73]

    Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar

    [74]

    Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar

    [75]

    Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar

    [76]

    Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar

    [77]

    Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar

    [78]

    Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar

    [79]

    Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar

    [80]

    Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar

    [81]

    Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar

    [82]

    Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar

    [83]

    Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar

    [84]

    Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar

    [85]

    Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar

    [86]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [87]

    Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar

    [88]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [89]

    Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar

    [90]

    Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar

    [91]

    Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar

    [92]

    Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar

    [93]

    Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar

    [94]

    Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar

    [95]

    Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar

    [96]

    Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar

    [97]

    Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar

    [98]

    Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar

    [99]

    Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar

    [100]

    Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar

    [101]

    Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar

    [102]

    Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar

    [103]

    Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar

    [104]

    Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar

    [105]

    Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar

    [106]

    Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar

    [107]

    Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar

    [108]

    Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar

    [109]

    Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar

    [110]

    Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar

    [111]

    Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar

    [112]

    Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar

    [113]

    Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar

    [114]

    Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar

    [115]

    Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar

    [116]

    Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar

    [117]

    Cohen R E 1992 Nature 358 136Google Scholar

    [118]

    Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar

    [119]

    Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar

    [120]

    Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar

    [121]

    Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar

    [122]

    Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar

    [123]

    Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar

    [124]

    Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar

    [125]

    谭智 2019 博士学位论文 (成都: 四川大学)

    Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [126]

    Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar

    [127]

    Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar

    [128]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [129]

    Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar

    [130]

    Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar

    [131]

    Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar

    [132]

    Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar

    [133]

    Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar

    [134]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [135]

    Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar

    [136]

    Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar

    [137]

    Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar

    [138]

    Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar

    [139]

    Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar

    [140]

    Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar

    [141]

    Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar

    [142]

    Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar

    [143]

    Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar

  • 图 1  (a) KNN基无铅压电陶瓷d33的历史演变图; (b) KNN基无铅压电陶瓷与铅基陶瓷d33对比图[11,12,34,37,43,45]

    Figure 1.  (a) Historical evolution in d33 values of KNN-based ceramics as a function of time; (b) comparison of d33 values among KNN-based ceramics and PZT materials[11,12,34,37,43,45].

    图 2  (a)正交相(K0.5Na0.5NbO3陶瓷[56,61]); (b)室温下O-T相界(KNNL-BZ-BNT陶瓷体系[62], KNNSL-BNZ-BZ-MnO2陶瓷体系[63]); (c)室温下R-T/R-O-T相界KNN基陶瓷的畴结构(KNNS-BF-BNZ陶瓷体系[43], KNNS-BNZ-BZ陶瓷体系[34])

    Figure 2.  Domain structures of KNN-based ceramcis with different phase boundaries at room temperature: (a) Orthorhombic (K0.5Na0.5NbO3 ceramics[56,61]); (b) O-T phase boundaries (KNNL-BZ-BNT ceramics[62], KNNSL-BNZ-BZ-MnO2 ceramics[63]); (c) R-T/R-O-T phase boundaries (KNNS-BF-BNZ ceramics[43], KNNS-BNZ-BZ ceramics[34]).

    图 3  KNN基无铅压电陶瓷d33TC对比图[12,15-47]

    Figure 3.  Comparison of d33 and TC values of KNN-based ceramics[12,15-47].

    图 4  根据文献[120]重画的KNbO3中Nb原子位置在(001)平面的投影示意图

    Figure 4.  Projections of real Nb off-center displacements on the (001) plane redrawn from the Ref. [120].

    图 5  B位原子在单四方相与两相共存时沿[$ \overline{1} 01$]方向的能量分布示意图[125]

    Figure 5.  Energy distribution for B-site atom in single tetragonal phase and two-phase coexistence along [$ \overline{1} 01$] direction[125].

    表 1  室温下具有O-T相界的KNN压电陶瓷性能

    Table 1.  Properties of KNN ceramics with O-T phase boundary at room temperature.

    Material systemd33/pC·N–1kpTC/℃
    KNLANT[15]2520.454438
    KNLN-BCZT[16]1800.34425
    KNN-KLN[17]1210.39
    KNLN-AS[18]2300.39430
    KNLN-BNCT[19]2620.36~400
    KNN-BC[20]1650.40~390
    KNN-LS[21]2800.494364
    KNN-BLZ[22]2650.365364
    KNN-BC-BNH[23]2720.47333
    DownLoad: CSV

    表 2  室温下具有R-O-T相界的KNN压电陶瓷的性能

    Table 2.  Properties of KNN ceramics with R-O-T phase boundary at room temperature.

    Material systemd33/pC·N–1kpTC /℃
    KNN-BNZ-BG[24]3120.44341
    KNN-BZ-BNZ[25]3450.50~260
    KNN-NS-BNKZH[26]4520.63~270
    KNNS-BNCZ[27]4150.46245
    KNNTS-BNKZ[28]4000.46240
    KNN-BNZN[29]318 ± 10360
    KNNS-BKZH[30]4510.52258
    KNNS-BLKZ[31]385245
    KNNS-SZ-BNH[32]470 ± 50.51 ± 0.02244
    KNNS-BS-BNZ[33]~480~225
    KNNS-BNZ-BZ[34]6100.58241
    KNNS-BNKZ-Fe-AS[12]650~180
    DownLoad: CSV

    表 3  室温下具有R-T相界的KNN压电陶瓷的性能

    Table 3.  Properties of KNN ceramics with R-T phase boundary at room temperature.

    Material systemd33 /pC·N–1kpTC/℃
    KNNS-BNZSn[35]4650.51240
    KNNS-BZH[36]410255
    KNNS-BNKZ[37]4900.46227
    KNNTS-BNKZ[38]4600.40~220
    KNNS-BNH[39]4190.45242
    KNNS-BKZS[40]430243
    KNNS-BNLCZ[41]4850.48227
    KNNS-BNKH[42]525~210
    KNNS-BF-BNZ[43]550237
    KNNS-CZ-BKHT-MnO2[44]4250.49215
    KNNS-BZ-BKH[45]570 ± 10~190
    KNNS-BNZ-BF[46]5110.515269
    KNANS-BNZ[47]4400.50250
    DownLoad: CSV

    表 4  KNN基无铅压电陶瓷压电常数与畴结构尺寸

    Table 4.  Piezoelectric constant of KNN ceramics with domain size.

    Material systemd33 or $ {d}_{33}^{*} $Domain size
    KNNS-SZ-BAZ[52]487 pC/N30—65 nm,
    65—160 nm,
    30—45 nm
    KNNS-BZ-BNH[48]600 pm/V10—100 nm
    KNNS-BNKH[42]525 pC/N10—30 nm
    KNNS-BNKZ-Fe-AS[12](650 ± 20) pC/N2 nm
    KNNS-BNZ-BZ[34]610 pC/N50—70 nm
    KNNT-BNKZ-CZ[51]482 pm/V60 nm
    KNNS-BZ-BNZ[65]300 pC/N150 nm—1.0 μm
    KNNS-CZ-BKH[66]550 pC/N30—230 nm
    KNNS-BNH[67]512 pC/N100 nm
    KNNS-SZ-BNZ[68]450 pC/N50—200 nm
    KNLNTS[54]455 pC/N110—310 nm
    KNNS-BNZ-BF[46]510 pC/N< 1 μm
    KNN-BNZ-MnO2-Sb2O3[69]318 pC/N< 1 μm
    KNN-BI-BNZ[57]317 pC/N~200 nm
    KNNdNS-BNZ[70]400 pC/N~ 1 μm
    DownLoad: CSV

    表 5  同时具有高压电性能和高居里温度的KNN陶瓷体系

    Table 5.  The KNN-based ceramics with high piezoelectric constant and high Curie temperature.

    Material systemd33 /pC·N–1TC/℃
    KNN-BNH[71]385315
    KNN-BNZ-LF[72]345314
    KNN-BNZ-MnO2[73]300345
    KNN-BNZ-BG[24]312341
    KNN-BNZ-BA[74]355335
    KNN-BAZ[75]347318
    KNN-BNZ[76]360329
    KNN-BKZ-BZ[77]305~300
    KNLNS-BS[78]325358
    KNN-BNZS[79]350315
    KNN-BS-BNKLZ[80]366335
    KNN-BNT-BNZ[81]318326
    KNN-BNZ-BI[57]317336
    DownLoad: CSV

    表 6  温度稳定性高的KNN陶瓷体系的压电常数以及变化量

    Table 6.  Comparison of piezoelectric constant and variation among KNN-based ceramics.

    d33/pC·N–1d33 variation/%$ {d}_{33}^{*} $/pm·V–1$ {d}_{33}^{*} $ variation/%
    KNLNT-CZ[86]almost unchanged @140 ℃
    KNN-BNZ-LF[72]3454208%@100 ℃
    KNNT-BNKZ-SZ-MnO2[49]40010%@180 ℃
    KNNT-BNKZ-CZ-MnO2[51]48210%@120 ℃
    KNNS-BNZ-SZ[87]39013%@180 ℃
    KNN-BLT-BZ-MnO2[88]4708.5%@100 ℃, 21.2%@170 ℃
    KNNS-BZ-BNZ[65]30010@100 ℃
    KNNS-(BHo)NHf[89]~386almost unchanged @140 ℃
    KNNT-BNZ-CZ[90]50210%@135 ℃
    KNNS-BNKH[42]52546010%@80 ℃
    KNN-BZ-BNH-MnO2[91]30015@120 ℃540 ± 105%@100 ℃
    KNN-BNH-BF-MnO2[92]45028%@160 ℃
    KNN-BNZ-MnO2-Sb2O3[69]3189%@170 ℃
    KNNS-BZH-BNZ[36]4104412.5%@100 ℃, 16.1%@180 ℃
    注: 16.1%@180 ℃表示到180 ℃性能下降16.1%.
    DownLoad: CSV

    表 7  处于6配位时的离子半径表[131]

    Table 7.  The ionic radii in six-fold coordination[131].

    Nb5+Ta5+Zr4+Hf4+Sn4+Ti4+Sb5+Sb3+Ga3+
    离子半径/Å0.640.640.720.710.690.6050.600.760.62
    DownLoad: CSV

    表 8  不同结构下原子内坐标随应变的梯度, 注意OI位于Bmm2不包含Nb原子的(010)平面, KNN中OI,1和OI,2沿a方向分别靠近K和Na原子[138]

    Table 8.  Internal atomic coordinate gradients as a function of strains in different structure, noted that OI is located at the (010) plane without Nb atoms in Bmm2, OI,1 and OI,2 are close to K and Na along a axis, respectively[139].

    KNbOO
    KNu3/∂η30.1080.166–0.092–0.091
    u1/∂η50.1150.210–0.151–0.024
    KNaNbOOI,1OI,2
    KNNu3/∂η30.1030.5420.125–0.158–0.125–0.135
    u1/∂η50.0940.8280.194–0.235–0.061–0.309
    DownLoad: CSV
  • [1]

    Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar

    [2]

    Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar

    [3]

    Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar

    [4]

    Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar

    [5]

    Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [6]

    Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar

    [7]

    Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar

    [8]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [9]

    Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar

    [10]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [11]

    Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [12]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [13]

    Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar

    [14]

    Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar

    [15]

    Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar

    [16]

    Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar

    [17]

    Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar

    [18]

    Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar

    [19]

    Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar

    [20]

    Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar

    [21]

    Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar

    [22]

    Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar

    [23]

    Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar

    [24]

    Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar

    [25]

    Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar

    [26]

    Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar

    [27]

    Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar

    [28]

    Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar

    [29]

    Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar

    [30]

    Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar

    [31]

    Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar

    [32]

    Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar

    [33]

    Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar

    [34]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar

    [35]

    Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar

    [36]

    Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar

    [37]

    Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar

    [38]

    Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar

    [39]

    Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar

    [40]

    Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar

    [41]

    Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar

    [42]

    Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar

    [43]

    Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar

    [44]

    Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar

    [45]

    Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar

    [46]

    Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar

    [47]

    Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar

    [48]

    Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar

    [49]

    Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar

    [50]

    Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar

    [51]

    Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar

    [52]

    Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar

    [53]

    Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar

    [54]

    Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar

    [55]

    Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar

    [56]

    López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar

    [57]

    Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar

    [58]

    Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar

    [59]

    Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar

    [60]

    Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar

    [61]

    Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar

    [62]

    Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar

    [63]

    Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar

    [64]

    Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar

    [65]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar

    [66]

    Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar

    [67]

    Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar

    [68]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [69]

    Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar

    [70]

    Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar

    [71]

    Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar

    [72]

    Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar

    [73]

    Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar

    [74]

    Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar

    [75]

    Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar

    [76]

    Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar

    [77]

    Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar

    [78]

    Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar

    [79]

    Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar

    [80]

    Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar

    [81]

    Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar

    [82]

    Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar

    [83]

    Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar

    [84]

    Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar

    [85]

    Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar

    [86]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [87]

    Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar

    [88]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [89]

    Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar

    [90]

    Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar

    [91]

    Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar

    [92]

    Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar

    [93]

    Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar

    [94]

    Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar

    [95]

    Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar

    [96]

    Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar

    [97]

    Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar

    [98]

    Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar

    [99]

    Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar

    [100]

    Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar

    [101]

    Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar

    [102]

    Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar

    [103]

    Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar

    [104]

    Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar

    [105]

    Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar

    [106]

    Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar

    [107]

    Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar

    [108]

    Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar

    [109]

    Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar

    [110]

    Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar

    [111]

    Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar

    [112]

    Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar

    [113]

    Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar

    [114]

    Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar

    [115]

    Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar

    [116]

    Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar

    [117]

    Cohen R E 1992 Nature 358 136Google Scholar

    [118]

    Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar

    [119]

    Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar

    [120]

    Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar

    [121]

    Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar

    [122]

    Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar

    [123]

    Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar

    [124]

    Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar

    [125]

    谭智 2019 博士学位论文 (成都: 四川大学)

    Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [126]

    Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar

    [127]

    Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar

    [128]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [129]

    Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar

    [130]

    Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar

    [131]

    Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar

    [132]

    Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar

    [133]

    Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar

    [134]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [135]

    Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar

    [136]

    Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar

    [137]

    Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar

    [138]

    Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar

    [139]

    Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar

    [140]

    Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar

    [141]

    Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar

    [142]

    Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar

    [143]

    Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar

  • [1] Chen Xiao-Ming, Wang Ming-Yan, Karaki Tomoaki, Li Guo-Rong. Temperature-stable electrical properties of CaZrO3-modified (Na, K)NbO3-based lead-free piezoceramics. Acta Physica Sinica, 2021, 70(19): 197701. doi: 10.7498/aps.70.20210440
    [2] Zhang Guan-Jie, Yang Hao, Zhang Nan. Research progress of the investigation of intrinsic and extrinsic origin of piezoelectric materials by X-ray diffraction. Acta Physica Sinica, 2020, 69(12): 127711. doi: 10.7498/aps.69.20200301
    [3] Liu Yi-Xuan, Li Zhao, Thong Hao-Cheng, Lu Jing-Tong, Li Jing-Feng, Gong Wen, Wang Ke. Grain size effect on piezoelectric performance in perovskite-based piezoceramics. Acta Physica Sinica, 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [4] Xu Ze, Lou Lu-Yao, Zhao Chun-Lin, Tang Hao-Cheng, Liu Yi-Xuan, Li Zhao, Qi Xiao-Mei, Zhang Bo-Ping, Li Jing-Feng, Gong Wen, Wang Ke. Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics. Acta Physica Sinica, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [5] Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng. Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics. Acta Physica Sinica, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [6] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [7] Jing Qi, Li Xiao-Juan. Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity. Acta Physica Sinica, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [8] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [9] Liu Shi-Yu, Yu Da-Shu, Lü Yue-Kai, Li De-Jun, Cao Mao-Sheng. First-principles study of structural stability and electronic properties of tetragonal and orthorhombic as well as monoclinic K0.5Na0.5NbO3. Acta Physica Sinica, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [10] Wang Bin-Ke, Tian Xiao-Xia, Xu Zhuo, Qu Shao-Bo, Li Zhen-Rong. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Physica Sinica, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [11] Zhao Jing-Bo, Du Hong-Liang, Qu Shao-Bo, Zhang Hong-Mei, Xu Zhuo. Effects of A-site equivalence and non-equivalence substitution on polarization properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Acta Physica Sinica, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [12] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [13] Zhao Su-Chuan, Li Guo-Rong, Zhang Li-Na, Wang Tian-Bao, Ding Ai-Li. Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics. Acta Physica Sinica, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [14] Kang Xiang-Zhe, Ye Hui. Electro-optic properties of potassium sodium strontium barium niobate ferroelectric thin films. Acta Physica Sinica, 2006, 55(9): 4928-4933. doi: 10.7498/aps.55.4928
    [15] Chu Rui-Qing, Xu Zhi-Jun, Li Guo-Rong, Zeng Hua-Rong, Yu Han-Feng, Shao Xin, Luo Hao-Su, Yin Qing-Rui. Ultrahigh piezoelectric response along some special cleavage plane in BaTiO3 single-crystals. Acta Physica Sinica, 2005, 54(2): 935-938. doi: 10.7498/aps.54.935
    [16] Zhao Ming-Lei, Wang Chun-Lei, Wang Jin-Feng, Chen Hong-Cun, Zhong Wei-Lie. Enhanced piezoelectric properties of (Bi0.5Na0.5)1-xBax TiO3 lead-free ceramics by sol-gel method. Acta Physica Sinica, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [17] CHU BAO-JIN, LI GUO-RONG, YIN QING-RUI, ZHANG WANG-ZHONG, CHEN DA-REN. INFLUENCE OF NONSTOICHIOMETRY AND DOPING ON ELECTRICAL PROPERTIES OF (Na1/2Bi1/2)0.92Ba0.08TiO3 CERAMICS. Acta Physica Sinica, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [18] YIN XIN, Lü MENG-KAI, LI FU-QI. THE PIEZOELECTRIC PROPERTY OF NH4IO2 CRYSTAL. Acta Physica Sinica, 1989, 38(1): 124-127. doi: 10.7498/aps.38.124
    [19] ZHU YONG, ZHANG DAO-FAN. THE ELECTRO-OPTIC,PYROELECTRIC,DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF THE SINGLE CRYSTAL Sr4NaLiNb10O30. Acta Physica Sinica, 1979, 28(2): 234-239. doi: 10.7498/aps.28.234
    [20] HUANG ZHAO-MING, ZHUANG PEI-GI, JIANG ZU-TAO, YU GUI-FANG. A METHOD OF DYNAMIC MEASUREMENT OF THE PIEZOELECTRIC PROPERTY OF ADP CRYSTAL. Acta Physica Sinica, 1966, 22(8): 911-918. doi: 10.7498/aps.22.911
Metrics
  • Abstract views:  20632
  • PDF Downloads:  884
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2020
  • Accepted Date:  20 March 2020
  • Published Online:  20 June 2020

/

返回文章
返回