Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of pyroelectric characteristics of lead-free ferroelectric ceramics for infrared detection

Guo Shao-Bo Yan Shi-Guang Cao Fei Yao Chun-Hua Wang Gen-Shui Dong Xian-Lin

Citation:

Research progress of pyroelectric characteristics of lead-free ferroelectric ceramics for infrared detection

Guo Shao-Bo, Yan Shi-Guang, Cao Fei, Yao Chun-Hua, Wang Gen-Shui, Dong Xian-Lin
PDF
HTML
Get Citation
  • Due to the excellent pyroelectric properties, ferroelectric ceramics containing lead element are widely used as sensitive materials in pyroelectric infrared detectors at present. The research and development of lead-free ferroelectric ceramics for this kind of detector has become a hot research spot in the areas of dielectric physics and materials in recent years. In this article, the recent research progress of the pyroelectric effect in series of important lead-free ferroelectric ceramic systems is reviewed, including barium titanate, sodium bismuth titanate, potassium sodium niobite, barium strontium niobite, etc. The methods of enhancing the pyroelectric effect are summarized, including doping modification, phase boundary design, process improvement, etc. Through comparative analysis of the relationship between pyroelectric properties and depolarization temperatures of different systems, it is concluded that bismuth sodium titanate based ceramics are the most potential lead-free materials in the future. The prospective research work of lead-free ferroelectric ceramics for infrared detection is also suggested.
      Corresponding author: Wang Gen-Shui, genshuiwang@mail.sic.ac.cn ; Dong Xian-Lin, xldong@mail.sic.ac.cn
    [1]

    钟维烈 2000 铁电体物理学 (北京: 科学出版社) 第17页

    Zhong W L 2000 Ferroelectric Physics (Beijing: Science Press) p17 (in Chinese)

    [2]

    王永龄 2003 功能陶瓷性能与应用 (北京: 科学出版社) 第3页

    Wang Y L 2003 Performance and Application of Functional Ceramics (Beijing: Science Press) p3 (in Chinese)

    [3]

    殷之文 2003 电介质物理学 (第二版) (北京: 科学出版社) 第715页

    Yin Z W 2003 Dielectrics Physics (2nd Ed.) (Beijing: Science Press) p715 (in Chinese)

    [4]

    Wentz J L, Kennedy L Z 1964 J. Appl. Phys. 35 1767Google Scholar

    [5]

    Liu S T, Kyonka J 1974 Ferroelectrics 7 167Google Scholar

    [6]

    Hardiman B, Reeves C P, Zeyfang R R 1976 Ferroelectrics 12 163Google Scholar

    [7]

    Whatmore R W, Osbond P C, Shorrocks N M 1987 Ferroelectrics 76 351Google Scholar

    [8]

    Nadoliisky M M, Vassileva T K, Yanchev R V 1991 Ferroelectrics 118 111Google Scholar

    [9]

    Frutos J D, Jimenez B 1992 Sens. Actuators A 32 393Google Scholar

    [10]

    Mendiola J, Alemany C, Frutos J D 1993 Sens. Actuators A 37 516Google Scholar

    [11]

    Stringfellow S B, Gupta S, Shaw C P, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 573Google Scholar

    [12]

    Shaw C P, Gupta S, Stringfellow S B, Navarro A, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 2123Google Scholar

    [13]

    Whatmore R W, Molter O, Shaw C P 2003 J. Eur. Ceram. Soc. 23 721Google Scholar

    [14]

    Liu S T, Long D 1978 Proc. IEEE 66 14Google Scholar

    [15]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [16]

    Lang S B 2005 Phys. Today 58 31Google Scholar

    [17]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [18]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 36Google Scholar

    [19]

    Arlt G, Hennings D, With G D 1985 J. Appl. Phys. 58 1619Google Scholar

    [20]

    Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 2005 J. Am. Ceram. Soc. 81 677Google Scholar

    [21]

    Kamel T M, With G D 2008 J. Eur. Ceram. Soc. 28 851Google Scholar

    [22]

    Shaw C P, Whatmore R W, Alcock J R. Porous 2007 J. Am. Ceram. Soc. 90 137Google Scholar

    [23]

    Zeng T, Wang G S, Dong X L, He H L, Chen X F 2007 Mater. Sci. Eng. B 140 5Google Scholar

    [24]

    聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153Google Scholar

    Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153Google Scholar

    [25]

    景奇, 李晓娟 2019 物理学报 68 057701Google Scholar

    Jing Q, Li X J 2019 Acta Phys. Sin. 68 057701Google Scholar

    [26]

    Venet M, Guerra J L S, Santos I A, Eiras J A, Garcia D 2007 J. Phys: Condens. Matter 19 026207Google Scholar

    [27]

    伍萌佳, 杨群保, 李永祥 2007 无机材料学报 22 1025Google Scholar

    Wu M J, Yang Q B, Li Y X 2007 J. Inorg. Mater. 22 1025Google Scholar

    [28]

    Perls T A, Diesel T J, Dobrov W I 1958 J. Appl. Phys. 29 1297Google Scholar

    [29]

    Lang S B, Rice L H, Shaw S A 1969 J. Appl. Phys. 40 4335Google Scholar

    [30]

    Ianculescu A, Pintilie I, Vasilescu C A, Botea M, Iuga A, Melinescu A, Dragan N, Pintilie L 2016 Ceram. Int. 42 10338Google Scholar

    [31]

    Yoo J H, Gao W, Yoon K H 1999 J. Mater. Sci. 34 5361Google Scholar

    [32]

    Deb K K, Hi ll, M.D, Kelly J F 1992 J. Mater. Res. 7 3296Google Scholar

    [33]

    Deb K K 1994 MRS Proc. 360 127Google Scholar

    [34]

    Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer H T, Pientschke C, Beige H 2008 J. Electroceram. 20 43Google Scholar

    [35]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [36]

    Jha P A, Jha A K 2014 Indian J. Phys. 88 489Google Scholar

    [37]

    Srikanth K S, Vaish R 2017 J. Eur. Ceram. Soc. 37 3927Google Scholar

    [38]

    Sagar R, Madolappa S, Raibagkar R L 2012 Solid State Sci. 14 211Google Scholar

    [39]

    Whatmore R W, Watton R 2000 Ferroelectrics 236 259Google Scholar

    [40]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [41]

    Benabdallah F, Simon A, Khemakhem H, Elissalde C, Maglione M 2011 J. Appl. Phys. 109 124116Google Scholar

    [42]

    Yao S, Ren W, Ji H, Wu X, Ye Z G 2012 J. Phys. D: Appl. Phys. 45 195301Google Scholar

    [43]

    Liu X, Chen Z H, Wu D, Fang B J, Ding J N, Zhao X Y, Xu H Q, Luo H S 2015 Jpn. J. Appl. Phys. 54 071501Google Scholar

    [44]

    Liu X, Wu D, Chen Z H, Fa ng, B J, Di ng, J N, Zhao X Y, Luo H S 2015 Adv. Appl. Ceram. 114 436Google Scholar

    [45]

    Patel S, Chauhan A, Vaish R 2015 Solid State Sci. 52 10Google Scholar

    [46]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N 1961 Sov. Phys. Solid State 2 2651

    [47]

    Dorcet V, Trolliard G, Boullay P 2008 Chem. Mater. 20 5061Google Scholar

    [48]

    Trolliard G, Dorcet V 2008 Chem. Mater. 20 5074Google Scholar

    [49]

    Hagiyev M S, Ismailzade I H, Abiyev A K 1984 Ferroelectrics 56 215Google Scholar

    [50]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Mater. Sci. 52 7382Google Scholar

    [51]

    Balakt A M, Shaw C P, Zhang Q 2016 J. Mater. Sci.: Mater. Electron. 27 12947Google Scholar

    [52]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Eur. Ceram. Soc. 37 1459Google Scholar

    [53]

    Balakt A M, Shaw C P, Zhang Q 2017 Ceram. Int. 43 3726Google Scholar

    [54]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Alloys Compd. 709 82Google Scholar

    [55]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [56]

    Guo F, Yang B, Zhang S, Wu F, Liu D, Hu P, Sun Y, Wang D, Cao W 2013 Appl. Phys. Lett. 103 182906Google Scholar

    [57]

    Shen M, Li W, Li M, Liu H, Xu, J M, Qiu S, Zhang G, Lu Z, Li H, Jiang S 2019 J. Eur. Ceram. Soc. 39 1810Google Scholar

    [58]

    Zhang X, Jiang G, Guo F, Liu D, Zhang S, Yang B, Cao W 2018 J. Am. Ceram. Soc. 101 2996Google Scholar

    [59]

    Yang Z, Liu B, Wei L, Hou Y 2008 Mater. Res. Bull. 43 81Google Scholar

    [60]

    Nagata H, Yoshida M, Makiuchi Y, Takenaka T 2003 Jpn. J. Appl. Phys. 42 7401Google Scholar

    [61]

    Mahdi R I, Al-Bahnam N J, Abbo A I, Hmood J K, Majid W H A 2016 J. Alloys Compd. 688 77Google Scholar

    [62]

    Lau S T, Cheng C H, Choy S H, Lin D M, Kwok K W, Chan H L W 2008 J. Appl. Phys. 103 104105Google Scholar

    [63]

    Zhang Q, Jiang S, Yang T 2012 J. Electroceram. 29 8Google Scholar

    [64]

    Jia J, Guo S, Cao F, Yan S, Yao C, Dong X, Wang G 2019 Mater. Res. Express 6 046308Google Scholar

    [65]

    Patel S, Chauhan A, Kundu S, Madhar N A, Ilahi B, Vaish R, Varma K B R 2015 AIP Adv. 5 087145Google Scholar

    [66]

    Peng P, Nie H, Liu Z, Cao F, Wang G, Dong X 2018 J. Am. Ceram. Soc. 101 4044Google Scholar

    [67]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [68]

    Shen M, Qin Y, Zhang Y, Marwat M A, Zhang C, Wang W, Li M, Zhang H, Zhang G, Jiang S 2019 J. Am. Ceram. Soc. 102 3990Google Scholar

    [69]

    Ballman A A, Brown H 1967 J. Cryst. Growth 1 311Google Scholar

    [70]

    Glass A M 1969 J. Appl. Phys. 40 4699Google Scholar

    [71]

    Zhang J, Wang G, Gao F, Mao C, Cao F, Dong X 2013 Ceram. Int. 39 1971Google Scholar

    [72]

    Santos I A, Spinola D U, Garcia D, Eiras J A 2002 J. Appl. Phys. 92 3251Google Scholar

    [73]

    Yao Y, Mak C L, Wong K H, Lu S, Xu Z 2009 Int. J. Appl. Ceram. Technol. 6 671Google Scholar

    [74]

    Said M, Velayutham T S, Abd Majid W H 2017 Ceram. Int. 43 9783Google Scholar

    [75]

    Rao K S, Prasad T N V K V, Subrahmanyam A S V, Lee J H, Kim J J, Cho S H 2003 Mater. Sci. Eng. B 98 279Google Scholar

    [76]

    Yao Y B, Mak C L, Ploss B 2012 J. Eur. Ceram. Soc. 32 4353Google Scholar

    [77]

    Qi Y, Lu C, Zhu J, Chen X, Song H, Zhang H, Xu X 2005 Appl. Phys. Lett. 87 082904Google Scholar

    [78]

    Ke S, Fan H, Huang H, Chan H, Yu S 2008 J. Appl. Phys. 104 024101Google Scholar

    [79]

    Muehlberg M, Burianek M, Joschko B, Klimm D, Danilewsky A, Gelissen M, Bayarjargal L, Gorler G P, Hildmann B O 2008 J. Cryst. Growth 310 2288Google Scholar

    [80]

    Zhang J, Dong X, Cao F, Guo S, Wang G 2013 Appl. Phys. Lett. 102 102908Google Scholar

    [81]

    Yao Y, Guo K, Bi D, Tao T, Liang B, Mak C L, Lu S G 2018 J. Mater. Sci. 29 17777Google Scholar

    [82]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

    [83]

    Nagata K, Yamamoto Y, Igarashi H, Okazaki K 1981 Ferroelectrics 38 853Google Scholar

    [84]

    Venet M, Santos I A, Eiras J A, Garcia D 2006 Solid State Ionics 177 589Google Scholar

    [85]

    Venet M, Vendramini A, Santos I A, Eiras J A, Garcia D 2005 Mater. Sci. Eng. B 117 254Google Scholar

    [86]

    Duran C, Trolier-McKinstry S, Messing G L 2000 J. Am. Ceram. Soc. 83 2203Google Scholar

    [87]

    Dursun S, Mensur-Alkoy E, Alkoy S 2016 J. Eur. Ceram. Soc. 36 2479Google Scholar

    [88]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 381Google Scholar

    [89]

    Kubota T, Tanaka N, Kageyama K, Takagi H, Sakabe Y, Suzuki T S, Sakka Y 2009 Jpn. J. Appl. Phys. 48 031405Google Scholar

    [90]

    Chen H, Guo S, Yao C, Dong X, Mao C, Wang G 2017 Ceram. Int. 43 3610Google Scholar

    [91]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, nakamura M 2004 Nature 432 84Google Scholar

    [92]

    Birol H, Damjanovic D, Setter N 2006 J. Eur. Ceram. Soc. 26 861Google Scholar

    [93]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [94]

    Zhang Y Y, Zhang J P, Wang E P, Jiang S L, Lu L 2013 Appl. Mech. Mater. 377 161Google Scholar

    [95]

    Zhou M, Liang R, Zhou Z, Dong X 2020 J. Am. Ceram. Soc. 103 193Google Scholar

    [96]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Eur. Ceram. Soc. 39 2058Google Scholar

    [97]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [98]

    Takenaka T, Sakata K 1991 Ferroelectrics 118 123Google Scholar

    [99]

    Tang Y, Shen Z, Zhang S, Shrout T R 2016 J. Am. Ceram. Soc. 99 1294Google Scholar

    [100]

    Zhao M, Wang C, Zhong W, Wang J, Chen H 2002 Jpn. J. Appl. Phys. 41 1455Google Scholar

    [101]

    Tang Y, Shen Z Y, Du Q, Zhao X, Wang F, Qin X, Wang T, Shi W, Sun D, Zhou Z, Zhang S 2018 J. Eur. Ceram. Soc. 38 5348Google Scholar

    [102]

    Takenaka T, Sakata K 1989 Ferroelectrics 94 175Google Scholar

    [103]

    Takenaka T, Sakata K 1980 Jpn. J. Appl. Phys. 19 31Google Scholar

    [104]

    Shen Z, Liu J, Grins J, Nygren M, Wang P, Kan Y, Yan H, Sutter U 2005 Adv. Mater. 17 676Google Scholar

    [105]

    Chen W, Hotta Y, Tamura T, Miwa K, Watari K 2006 Scr. Mater. 54 2063Google Scholar

    [106]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 490Google Scholar

    [107]

    Karthik C, Varma K B R 2008 Mater. Res. Bull. 43 3026Google Scholar

  • 图 1  铁电材料中的热释电效应起源示意图

    Figure 1.  Schematic illustration of the pyroelectric effect in ferroelectric materials.

    图 2  (a) BZT-BCT相图; (b) 0.5 Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3热释电系数温谱[40,42]

    Figure 2.  (a) Phase diagram of the BZT-BCT system; (b) the pyroelectric coefficient of the 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics[40,42].

    图 3  钛酸铋钠BNT无铅铁电材料的相结构演变过程

    Figure 3.  Phase transitions of BNT lead-free material from low temperature to high temperature.

    图 4  BNT-BT固溶体组分温度相图[50]

    Figure 4.  Phase diagram of BNT-BT solid solution[50].

    图 5  0.98BNT-0.02BA-xNN陶瓷在20—80 ℃范围内的热释电性能 (a)电流响应优值Fi; (b)电压响应优值Fv; (c)探测率优值Fd; (d) 1 kHz下的介电温谱[66]

    Figure 5.  Pyroelectric figure of merits (a) Fi, (b) Fv, (c) Fd and (d) dielectric constant as a function of temperature within 20—80 ℃ of 0.98BNT-0.02BA-xNN ceramics[66].

    图 6  Sr/Ba比(30/70—50/50)对SBN铁电陶瓷电性能的影响规律 (a)介电温谱; (b)居里温度; (c)电滞回线; (d)热释电系数温谱[71]

    Figure 6.  (a) Dielectric constant, (b) Curie temperature, (c) P-E hysteresis loops, and (d) pyroelectric constant as a function of temperature for SBN ceramics with different Sr/Ba ratio (30/70−50/50)[71].

    图 7  (K0.5Na0.5)2x(Sr0.6Ba0.4)5–x Nb10O30 (KNSBN)陶瓷 (a)介电温谱; (b)热释电系数温谱[76]

    Figure 7.  The dependence of (a) dielectric constant and (b) pyroelectric coefficient on temperature of (K0.5Na0.5)2x(Sr0.6Ba0.4)5–x Nb10O30 (KNSBN) ceramics[76].

    图 8  CaNb2O6-SrNb2O6-BaNb2O6准三元系相图, 其中灰色区域为CSBN单相稳定存在的区域[79]

    Figure 8.  Phase diagram of CaNb2O6-SrNb2O6-BaNb2O6 ternary system. The grayish area marks the stability field of CSBN[79].

    图 9  Cax(Sr0.5Ba0.5)1–x Nb2O6 (x = 0, 0.10, 0.15, 0.20)无铅铁电陶瓷热释电性能 (a) 电流响应优值Fi; (b) 电压响应优值Fv; (c) 探测率优值Fd; (d) 热释电系数[80]

    Figure 9.  Pyroelectric figures of merits (a) Fi, (b) Fv, (c) Fd, and (d) pyroelectric coefficient as a function of temperature for Cax(Sr0.5Ba0.5)1–x Nb2O6 (x = 0, 0.10, 0.15, 0.20) ceramics[80].

    图 10  Cax Sr0.3–x Ba0.7Nb2O6陶瓷热释电及退极化性能 (a) 热释电系数; (b)退极化性能(以样品高温退火后d33T与完全极化d33RT比值表示)[82]

    Figure 10.  (a) Pyroelectric coefficient as a function of temperature of CSBN (x) ceramics; (b) the ratio of piezoelectric constant measured at different temperatures (d33T) to room temperature piezoelectric constant (d33RT) of ceramics and commercially PZT ceramics. The inset shows the depoling results for CSBN (x).

    图 11  (a) Sr0.63Ba0.37Nb2O6陶瓷普通烧结与热锻烧结的介电温谱与损耗温谱; (b) Sr0.63Ba0.37Nb2O6陶瓷热锻样品的室温电滞回线; (c) Sr0.53Ba0.47Nb2O6和Sr0.63Ba0.37Nb2O6陶瓷热锻样品热释电系数温谱; (d) Sr0.53Ba0.47Nb2O6和Sr0.63Ba0.37Nb2O6陶瓷热锻样品电流响应优值温谱[84]

    Figure 11.  (a) Dielectric constant and loss as a function of temperature for the Sr0.63Ba0.37Nb2O6 ordinary sintering (O.S) and hot forging (H.F) ceramics (1. H.F∥; 2. O.S; 3. H.F⊥); (b) hysteresis loops for the Sr0.63Ba0.37Nb2O6 H.F ceramics at room temperature and 50 Hz; (c) pyroelectric coefficient as a function of temperature for SBN textured ceramics; (d) figure of merit Fi as a function of temperature for SBN textured ceramics[84].

    图 12  不同体系铁电陶瓷的热释电系数与退极化温度关系图

    Figure 12.  Comparison of pyroelectric coefficient and depoling temperature between lead-free and lead-based ferroelectric ceramics.

    图 13  不同体系铁电陶瓷的电压响应优值与退极化温度的关系图

    Figure 13.  Comparison of pyroelectric figure of merit Fv and depoling temperature between lead-free and lead-based ferroelectric ceramics.

    表 1  BT基无铅铁电陶瓷的热释电性能列表

    Table 1.  Pyroelectric properties of BT-based lead-free ferroelectric ceramics.

    材料组成热释电系数/
    10–4 C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    BaTiO32.001200120800.00804.20[28]
    Ba0.95Ca0.05TiO3~2.00113[29]
    Ba0.90Sr0.10TiO34.7010880.0161080.0173[30]
    Ba0.80Sr0.20TiO34.2014190.018770.0118[30]
    BaSn0.05Ti0.95O34.3225200.029772280.01008.20[35]
    Porous BaSn0.05Ti0.95O35.5721800.035/3550.0180022.00[35]
    BaZr0.025Ti0.975O37.50105[36]
    BaCe0.10Ti0.90O37.82833390.011010.39[37]
    0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO35.8493[32]
    (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-1 wt%Li8.6025900.03379407.60.015015.80[43]
    (Ba0.85Sr0.15)(Zr0.1Ti0.9)O314.0046910.041466000.015014.50[45]
    (Ba0.84Ca0.15Sr0.01)(Zr0.09Ti0.9Sn0.01)O311.7042000.020834790.013018.10[44]
    Modified PZT3.802900.0032301520.060058.00[15]
    Modified PT3.802200.0112551520.080033.00[15]
    PMN-PZT3.562180.0072261420.074159.30[12]
    DownLoad: CSV

    表 2  BNT基无铅铁电陶瓷的热释电性能列表

    Table 2.  Pyroelectric properties of BNT-based lead-free ferroelectric ceramics.

    材料组成热释电系数/10–4 C·m–2·K–1介电常数介电损耗居里温度/℃退极化
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    (Bi0.5Na0.5)TiO32.50320200[49]
    0.94BNT-0.06BT3.153960.04361151120.02109.080[50]
    0.94(Bi0.52Na0.52)TiO3-0.06BT6.99552500.047016.630[50]
    0.94BNT-0.06BT-0.005La+0.002Ta12.926710.0472404610.07802.760[54]
    0.94BNT-0.06BT-0.005La7.42692650.04801.400[52]
    0.94BNT-0.06Ba1.02TiO33.54851240.00958.300[51]
    0.80BNT-0.20BT2.422090.026815.300[55]
    0.93BNT-0.07Ba(Zr0.055Ti0.945)O35.70872030.022010.500[56]
    0.93BNT-0.07Ba(Zr0.055Ti0.945)O3-0.00125Mn6.10~300722170.023012.600[58]
    0.94BNT-0.06Ba(Zr0.25Ti0.75)O327.2014620.0460300380.0750[57]
    0.95(0.95BNT-0.05BKT)-0.05BT3.258530.027819450.026013.430[52]
    0.95(0.94BNT-0.016BLT-0.05BKT)-0.05BT3.608580.02942210.029014.750[52]
    0.82BNT-0.18BKT-0.008Mn17.006050.0160~350~15065.600[53]
    0.88BNT-0.084BKT-0.036BT3.669330.02353011652150.026015.408[61]
    0.98BNT-0.02BA3.873300.0110~3001901380.047123.300[66]
    0.98(0.98BNT-0.02BA)-0.02NN7.483720.0110~3001552660.080742.200[66]
    0.97(0.99BNT-0.01BA)-0.03KNN3.705120.02902821181320.028911.500[67]
    0.98(0.98BNT-0.02BA)-0.02KNN8.428800.0400~2803030.039017.200[68]
    0.715BNT-0.22ST-0.065BT-0.4 wt%glass6.807340.1430157/0.03708.850[65]
    0.98BNT-0.02BN4.424650.00801951710.038227.400[64]
    0.97BNT-0.03BNN5.605490.00901432170.04130.100[64]
    DownLoad: CSV

    表 4  KNN基铁电陶瓷的热释电性能列表

    Table 4.  Pyroelectric properties of KNN-based lead-free ferroelectric ceramics.

    材料组成热释电系数/
    10–4 C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    退极化
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    KNN1.40472410[92]
    0.97KNN-0.03BKT+0.8 wt%MnO2.2112770.031~35090.070.00804.81[93]
    0.97KNN-0.03BKT+2 wt%MnO2.189800.035~35099.40.01145.71[93]
    0.96(K0.5N0.5)(Nb0.8Ta0.2)O3-0.04Li(Nb0.8Ta0.2)O31.6512300.018123.50.01108.82[62]
    0.96(K0.5N0.5)(Nb0.84Ta0.1Sb0.06)O3-0.04Li(Nb0.84Ta0.1Sb0.06)O31.9015200.01893.10.00705.98[62]
    0.95(K0.45Na0.55) NbO3-0.05LiSbO315.0089135[94]
    NaNbO3-0.01MnO-0.005Bi2O31.85270670.033353.20[96]
    0.85NaNbO3-0.15Ba0.6(Bi0.5Na0.5)0.4TiO33.1111510.0161101040.01028.10[95]
    0.95AgNbO3-0.05LiTaO33.682520.0221301380.060219.70[97]
    DownLoad: CSV

    表 3  SBN基无铅铁电陶瓷的热释电性能列表

    Table 3.  Pyroelectric properties of SBN-based lead-free ferroelectric ceramics.

    材料组成热释电系数
    /10–4C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    Sr0.5Ba0.5Nb2O62.0084[71]
    Gd0.01Sr0.515Ba0.47Nb2O62.8524801494.5[74]
    (K0.5Na0.5)2.3(Sr0.6Ba0.4)3.85Nb10O302.11~160022714.1[76]
    Ca0.15(Sr0.5Ba0.5)0.85Nb2O63.619330.0270~901720.021011.5[80]
    Sr0.525Ca0.125Ba0.35Nb2O62.37~50[81]
    Ca0.2Sr0.1Ba0.7Nb2O61.24217600.02036.1[82]
    Sr0.53Ba0.47Nb2O6 H.F(⊥)5.109800.0180~1052300.028118.7[84]
    Sr0.53Ba0.47Nb2O6 H.F(//)4.004680.0050~1151890.045640.6[84]
    Sr0.53Ba0.47Nb2O6 TGG(⊥)2.907700.0360148[86]
    Sr0.3Ba0.7Nb2O6 O.F0.714910.0469163340.00782.4[90]
    Sr0.3Ba0.7Nb2O6 H.P(200 MPa⊥)2.386760.05341631130.01896.3[90]
    DownLoad: CSV

    表 5  BLSF铁电陶瓷的热释电性能列表

    Table 5.  Pyroelectric properties of KNN-based lead-free ferroelectric ceramics.

    材料组成热释电系数
    /10–4 C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    (NaBi)Bi4Ti4O15+1 wt%MnCO3(O.F)0.5601400.002965818.700.0159.88[102]
    (NaBi)Bi4Ti4O15+1 wt%MnCO3(H.F)1.3001490.003266043.500.03321.1[102]
    (NaBi)0.95Ca0.05Bi4Ti4O15+1 wt%MnCO3(O.F)0.8201480.001668029.100.02763.5[102]
    (NaBi)0.95Ca0.05Bi4Ti4O15+1 wt%MnCO3(H.F)1.0001340.001766535.200.03278.4[102]
    Sr1.1Bi3.9Ti3.9Ta0.1O15+0.5 wt%MnCO31.3001900.0010~5200.03040.0[100]
    CaBi4Ti4O150.3591450.008079014.740.0124.6[99]
    CaBi4Ti3.95Nb0.05O150.4401360.006079018.070.0156.7[99]
    CaBi4Ti4O15+0.2 wt%MnO20.5821300.005079023.900.02110.0[99]
    CaBi4Ti3.95Nb0.05O15+0.2 wt%MnO20.844990.002079034.650.04024.4[99]
    Bi4Ti2.9W0.1O12-0.04%Mn0.5711470.0030655[101]
    DownLoad: CSV
  • [1]

    钟维烈 2000 铁电体物理学 (北京: 科学出版社) 第17页

    Zhong W L 2000 Ferroelectric Physics (Beijing: Science Press) p17 (in Chinese)

    [2]

    王永龄 2003 功能陶瓷性能与应用 (北京: 科学出版社) 第3页

    Wang Y L 2003 Performance and Application of Functional Ceramics (Beijing: Science Press) p3 (in Chinese)

    [3]

    殷之文 2003 电介质物理学 (第二版) (北京: 科学出版社) 第715页

    Yin Z W 2003 Dielectrics Physics (2nd Ed.) (Beijing: Science Press) p715 (in Chinese)

    [4]

    Wentz J L, Kennedy L Z 1964 J. Appl. Phys. 35 1767Google Scholar

    [5]

    Liu S T, Kyonka J 1974 Ferroelectrics 7 167Google Scholar

    [6]

    Hardiman B, Reeves C P, Zeyfang R R 1976 Ferroelectrics 12 163Google Scholar

    [7]

    Whatmore R W, Osbond P C, Shorrocks N M 1987 Ferroelectrics 76 351Google Scholar

    [8]

    Nadoliisky M M, Vassileva T K, Yanchev R V 1991 Ferroelectrics 118 111Google Scholar

    [9]

    Frutos J D, Jimenez B 1992 Sens. Actuators A 32 393Google Scholar

    [10]

    Mendiola J, Alemany C, Frutos J D 1993 Sens. Actuators A 37 516Google Scholar

    [11]

    Stringfellow S B, Gupta S, Shaw C P, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 573Google Scholar

    [12]

    Shaw C P, Gupta S, Stringfellow S B, Navarro A, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 2123Google Scholar

    [13]

    Whatmore R W, Molter O, Shaw C P 2003 J. Eur. Ceram. Soc. 23 721Google Scholar

    [14]

    Liu S T, Long D 1978 Proc. IEEE 66 14Google Scholar

    [15]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [16]

    Lang S B 2005 Phys. Today 58 31Google Scholar

    [17]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [18]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 36Google Scholar

    [19]

    Arlt G, Hennings D, With G D 1985 J. Appl. Phys. 58 1619Google Scholar

    [20]

    Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 2005 J. Am. Ceram. Soc. 81 677Google Scholar

    [21]

    Kamel T M, With G D 2008 J. Eur. Ceram. Soc. 28 851Google Scholar

    [22]

    Shaw C P, Whatmore R W, Alcock J R. Porous 2007 J. Am. Ceram. Soc. 90 137Google Scholar

    [23]

    Zeng T, Wang G S, Dong X L, He H L, Chen X F 2007 Mater. Sci. Eng. B 140 5Google Scholar

    [24]

    聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153Google Scholar

    Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153Google Scholar

    [25]

    景奇, 李晓娟 2019 物理学报 68 057701Google Scholar

    Jing Q, Li X J 2019 Acta Phys. Sin. 68 057701Google Scholar

    [26]

    Venet M, Guerra J L S, Santos I A, Eiras J A, Garcia D 2007 J. Phys: Condens. Matter 19 026207Google Scholar

    [27]

    伍萌佳, 杨群保, 李永祥 2007 无机材料学报 22 1025Google Scholar

    Wu M J, Yang Q B, Li Y X 2007 J. Inorg. Mater. 22 1025Google Scholar

    [28]

    Perls T A, Diesel T J, Dobrov W I 1958 J. Appl. Phys. 29 1297Google Scholar

    [29]

    Lang S B, Rice L H, Shaw S A 1969 J. Appl. Phys. 40 4335Google Scholar

    [30]

    Ianculescu A, Pintilie I, Vasilescu C A, Botea M, Iuga A, Melinescu A, Dragan N, Pintilie L 2016 Ceram. Int. 42 10338Google Scholar

    [31]

    Yoo J H, Gao W, Yoon K H 1999 J. Mater. Sci. 34 5361Google Scholar

    [32]

    Deb K K, Hi ll, M.D, Kelly J F 1992 J. Mater. Res. 7 3296Google Scholar

    [33]

    Deb K K 1994 MRS Proc. 360 127Google Scholar

    [34]

    Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer H T, Pientschke C, Beige H 2008 J. Electroceram. 20 43Google Scholar

    [35]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [36]

    Jha P A, Jha A K 2014 Indian J. Phys. 88 489Google Scholar

    [37]

    Srikanth K S, Vaish R 2017 J. Eur. Ceram. Soc. 37 3927Google Scholar

    [38]

    Sagar R, Madolappa S, Raibagkar R L 2012 Solid State Sci. 14 211Google Scholar

    [39]

    Whatmore R W, Watton R 2000 Ferroelectrics 236 259Google Scholar

    [40]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [41]

    Benabdallah F, Simon A, Khemakhem H, Elissalde C, Maglione M 2011 J. Appl. Phys. 109 124116Google Scholar

    [42]

    Yao S, Ren W, Ji H, Wu X, Ye Z G 2012 J. Phys. D: Appl. Phys. 45 195301Google Scholar

    [43]

    Liu X, Chen Z H, Wu D, Fang B J, Ding J N, Zhao X Y, Xu H Q, Luo H S 2015 Jpn. J. Appl. Phys. 54 071501Google Scholar

    [44]

    Liu X, Wu D, Chen Z H, Fa ng, B J, Di ng, J N, Zhao X Y, Luo H S 2015 Adv. Appl. Ceram. 114 436Google Scholar

    [45]

    Patel S, Chauhan A, Vaish R 2015 Solid State Sci. 52 10Google Scholar

    [46]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N 1961 Sov. Phys. Solid State 2 2651

    [47]

    Dorcet V, Trolliard G, Boullay P 2008 Chem. Mater. 20 5061Google Scholar

    [48]

    Trolliard G, Dorcet V 2008 Chem. Mater. 20 5074Google Scholar

    [49]

    Hagiyev M S, Ismailzade I H, Abiyev A K 1984 Ferroelectrics 56 215Google Scholar

    [50]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Mater. Sci. 52 7382Google Scholar

    [51]

    Balakt A M, Shaw C P, Zhang Q 2016 J. Mater. Sci.: Mater. Electron. 27 12947Google Scholar

    [52]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Eur. Ceram. Soc. 37 1459Google Scholar

    [53]

    Balakt A M, Shaw C P, Zhang Q 2017 Ceram. Int. 43 3726Google Scholar

    [54]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Alloys Compd. 709 82Google Scholar

    [55]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [56]

    Guo F, Yang B, Zhang S, Wu F, Liu D, Hu P, Sun Y, Wang D, Cao W 2013 Appl. Phys. Lett. 103 182906Google Scholar

    [57]

    Shen M, Li W, Li M, Liu H, Xu, J M, Qiu S, Zhang G, Lu Z, Li H, Jiang S 2019 J. Eur. Ceram. Soc. 39 1810Google Scholar

    [58]

    Zhang X, Jiang G, Guo F, Liu D, Zhang S, Yang B, Cao W 2018 J. Am. Ceram. Soc. 101 2996Google Scholar

    [59]

    Yang Z, Liu B, Wei L, Hou Y 2008 Mater. Res. Bull. 43 81Google Scholar

    [60]

    Nagata H, Yoshida M, Makiuchi Y, Takenaka T 2003 Jpn. J. Appl. Phys. 42 7401Google Scholar

    [61]

    Mahdi R I, Al-Bahnam N J, Abbo A I, Hmood J K, Majid W H A 2016 J. Alloys Compd. 688 77Google Scholar

    [62]

    Lau S T, Cheng C H, Choy S H, Lin D M, Kwok K W, Chan H L W 2008 J. Appl. Phys. 103 104105Google Scholar

    [63]

    Zhang Q, Jiang S, Yang T 2012 J. Electroceram. 29 8Google Scholar

    [64]

    Jia J, Guo S, Cao F, Yan S, Yao C, Dong X, Wang G 2019 Mater. Res. Express 6 046308Google Scholar

    [65]

    Patel S, Chauhan A, Kundu S, Madhar N A, Ilahi B, Vaish R, Varma K B R 2015 AIP Adv. 5 087145Google Scholar

    [66]

    Peng P, Nie H, Liu Z, Cao F, Wang G, Dong X 2018 J. Am. Ceram. Soc. 101 4044Google Scholar

    [67]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [68]

    Shen M, Qin Y, Zhang Y, Marwat M A, Zhang C, Wang W, Li M, Zhang H, Zhang G, Jiang S 2019 J. Am. Ceram. Soc. 102 3990Google Scholar

    [69]

    Ballman A A, Brown H 1967 J. Cryst. Growth 1 311Google Scholar

    [70]

    Glass A M 1969 J. Appl. Phys. 40 4699Google Scholar

    [71]

    Zhang J, Wang G, Gao F, Mao C, Cao F, Dong X 2013 Ceram. Int. 39 1971Google Scholar

    [72]

    Santos I A, Spinola D U, Garcia D, Eiras J A 2002 J. Appl. Phys. 92 3251Google Scholar

    [73]

    Yao Y, Mak C L, Wong K H, Lu S, Xu Z 2009 Int. J. Appl. Ceram. Technol. 6 671Google Scholar

    [74]

    Said M, Velayutham T S, Abd Majid W H 2017 Ceram. Int. 43 9783Google Scholar

    [75]

    Rao K S, Prasad T N V K V, Subrahmanyam A S V, Lee J H, Kim J J, Cho S H 2003 Mater. Sci. Eng. B 98 279Google Scholar

    [76]

    Yao Y B, Mak C L, Ploss B 2012 J. Eur. Ceram. Soc. 32 4353Google Scholar

    [77]

    Qi Y, Lu C, Zhu J, Chen X, Song H, Zhang H, Xu X 2005 Appl. Phys. Lett. 87 082904Google Scholar

    [78]

    Ke S, Fan H, Huang H, Chan H, Yu S 2008 J. Appl. Phys. 104 024101Google Scholar

    [79]

    Muehlberg M, Burianek M, Joschko B, Klimm D, Danilewsky A, Gelissen M, Bayarjargal L, Gorler G P, Hildmann B O 2008 J. Cryst. Growth 310 2288Google Scholar

    [80]

    Zhang J, Dong X, Cao F, Guo S, Wang G 2013 Appl. Phys. Lett. 102 102908Google Scholar

    [81]

    Yao Y, Guo K, Bi D, Tao T, Liang B, Mak C L, Lu S G 2018 J. Mater. Sci. 29 17777Google Scholar

    [82]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

    [83]

    Nagata K, Yamamoto Y, Igarashi H, Okazaki K 1981 Ferroelectrics 38 853Google Scholar

    [84]

    Venet M, Santos I A, Eiras J A, Garcia D 2006 Solid State Ionics 177 589Google Scholar

    [85]

    Venet M, Vendramini A, Santos I A, Eiras J A, Garcia D 2005 Mater. Sci. Eng. B 117 254Google Scholar

    [86]

    Duran C, Trolier-McKinstry S, Messing G L 2000 J. Am. Ceram. Soc. 83 2203Google Scholar

    [87]

    Dursun S, Mensur-Alkoy E, Alkoy S 2016 J. Eur. Ceram. Soc. 36 2479Google Scholar

    [88]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 381Google Scholar

    [89]

    Kubota T, Tanaka N, Kageyama K, Takagi H, Sakabe Y, Suzuki T S, Sakka Y 2009 Jpn. J. Appl. Phys. 48 031405Google Scholar

    [90]

    Chen H, Guo S, Yao C, Dong X, Mao C, Wang G 2017 Ceram. Int. 43 3610Google Scholar

    [91]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, nakamura M 2004 Nature 432 84Google Scholar

    [92]

    Birol H, Damjanovic D, Setter N 2006 J. Eur. Ceram. Soc. 26 861Google Scholar

    [93]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [94]

    Zhang Y Y, Zhang J P, Wang E P, Jiang S L, Lu L 2013 Appl. Mech. Mater. 377 161Google Scholar

    [95]

    Zhou M, Liang R, Zhou Z, Dong X 2020 J. Am. Ceram. Soc. 103 193Google Scholar

    [96]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Eur. Ceram. Soc. 39 2058Google Scholar

    [97]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [98]

    Takenaka T, Sakata K 1991 Ferroelectrics 118 123Google Scholar

    [99]

    Tang Y, Shen Z, Zhang S, Shrout T R 2016 J. Am. Ceram. Soc. 99 1294Google Scholar

    [100]

    Zhao M, Wang C, Zhong W, Wang J, Chen H 2002 Jpn. J. Appl. Phys. 41 1455Google Scholar

    [101]

    Tang Y, Shen Z Y, Du Q, Zhao X, Wang F, Qin X, Wang T, Shi W, Sun D, Zhou Z, Zhang S 2018 J. Eur. Ceram. Soc. 38 5348Google Scholar

    [102]

    Takenaka T, Sakata K 1989 Ferroelectrics 94 175Google Scholar

    [103]

    Takenaka T, Sakata K 1980 Jpn. J. Appl. Phys. 19 31Google Scholar

    [104]

    Shen Z, Liu J, Grins J, Nygren M, Wang P, Kan Y, Yan H, Sutter U 2005 Adv. Mater. 17 676Google Scholar

    [105]

    Chen W, Hotta Y, Tamura T, Miwa K, Watari K 2006 Scr. Mater. 54 2063Google Scholar

    [106]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 490Google Scholar

    [107]

    Karthik C, Varma K B R 2008 Mater. Res. Bull. 43 3026Google Scholar

  • [1] Zhang Fu-Ping, Li Xi-Qin, Du Jin-Mei, Liu Yu-Sheng, Ye Fu-Qing. Failure distribution and reliable analysis of ferroelectric ceramics under pulsed electric field. Acta Physica Sinica, 2024, 73(10): 107701. doi: 10.7498/aps.73.20231354
    [2] Wu Bo, Wang Jue, Wang Wei, Zhou Guo-Fu. Research advances in nondegenerate two-photonabsorption and its applications. Acta Physica Sinica, 2023, 72(20): 204204. doi: 10.7498/aps.72.20230911
    [3] Liu Zhong-Lei, Cao Jin-Ming, Wang Zhi, Zhao Yu-Hong. Phase-field method explored ferroelectric vortex topology structure and morphotropic phase boundaries. Acta Physica Sinica, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [4] Chen Xu-Min, Ye Pan, Wang Ji-Guang, Huo De-Xuan, Cao Dong-Xing. Flexoelectric effect of perovskite superlattice SrTiO3/BaTiO3. Acta Physica Sinica, 2022, 71(20): 206302. doi: 10.7498/aps.71.20220988
    [5] Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming. Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Acta Physica Sinica, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [6] Pei Ming-Hui, Tian Yu, Zhang Jin-Xing. Control of surface structures and functionalities in perovskite-type ferroelectric oxides and their potential applications. Acta Physica Sinica, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [7] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [8] Zhao Guo-Dong, Yang Ya-Li, Ren Wei. Recent progress of improper ferroelectricity in perovskite oxides. Acta Physica Sinica, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [9] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [10] Xiang Jun, Guo Yin-Tao, Chu Yan-Qiu, Zhou Guang-Zhen. Preparation and electrical properties of double-doped perovskitestructured conducting ceramics Sm0.9Sr0.1Al1-xCoxO3-δ. Acta Physica Sinica, 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [11] Jiang Dong-Dong, Gu Yan, Feng Yu-Jun, Du Jin-Mei. Phase transformation and dielectric properties of lead zirconate stannate titanate ferroelectric ceramic under hydraulic compression. Acta Physica Sinica, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [12] Yu Gang, Dong Xian-Lin, Wang Gen-Shui, Chen Xue-Feng, Cao Fei. Ferroelectric polarization reversal behavior in 63PbTiO3-37BiScO3 bulk ceramics. Acta Physica Sinica, 2010, 59(12): 8890-8896. doi: 10.7498/aps.59.8890
    [13] Chen Xue-Feng, Li Hua-Mei, Li Dong-Jie, Cao Fei, Dong Xian-Lin. Study on slim-loop ferroelectric ceramics for high-power pulse capacitors. Acta Physica Sinica, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [14] Yu Xiao, Luo Xiao-Guang, Chen Gui-Feng, Shen Jun, Li Yang-Xian. First principle calculation of structural, elastic and electronic properties of XHfO3(X=Ba, Sr). Acta Physica Sinica, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [15] Yang Li-Sen, Liu Si-Min, Zhang Guang-Yin, Xu Jin-Jun, Guo Ru, Gao Yuan-Mei, Huang Chun-Fu, Lu Yi, Wang Da-Yun. Experimental study of a faster responsive effect of light induced refractive index change. Acta Physica Sinica, 2004, 53(2): 461-467. doi: 10.7498/aps.53.461
    [16] Duan Ping, Tan Guo-Tai, Dai Shou-Yu, Chen Zheng-Hao, Zhou Yue-Liang, Lü Hui-Bin. Colossal magnetoresistance effect in the perovskite-type La0.9Sb 0.1MnO3 material. Acta Physica Sinica, 2003, 52(8): 2061-2065. doi: 10.7498/aps.52.2061
    [17] Ma Shi-Hong, Yan Mei, Li Shu-Hong, Lu Xing-Ze, Wang Gen-Shui, Zhu Jun-Hao, Wang Wen-Cheng. Optimization of pyroelectric properties in ultrathin organized molecular films. Acta Physica Sinica, 2003, 52(1): 197-201. doi: 10.7498/aps.52.197
    [18] Liu Peng, Bian Xiao-Bing, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [19] FENG YU-JUN, YAO XI, XU ZHUO. PYROELECTRICITY OF TEMPERATURE-INDUCED PHASE TRANSITION IN TIN-MODIFIED LEAD ZIRCONATE TITANATE. Acta Physica Sinica, 2000, 49(8): 1606-1610. doi: 10.7498/aps.49.1606
    [20] YANG PING-XIONG, DENG HONG-MEI, CHU JUN-HAO. DOPING CHARACTERIZATION STUDIES OF LAYERED PEROVSKITE SrBi2Ta2O9 FERROELECTRIC THIN FILMS. Acta Physica Sinica, 1998, 47(7): 1222-1228. doi: 10.7498/aps.47.1222
Metrics
  • Abstract views:  14929
  • PDF Downloads:  426
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2020
  • Accepted Date:  14 April 2020
  • Published Online:  20 June 2020

/

返回文章
返回