-
In the past decades, thulium-doped fiber lasers (TDFLs) operating in an eye-safe range have attracted considerable attention, for they have extensive applications such as LIDAR, free space communication, medical diagnostics and pumping source for holmium-doped fiber laser or optical parameter oscillator. In this paper, we report a high power all-fiberized TDFL based on main-oscillator power-amplifier (MOPA) configuration. The preform is fabricated by the modified chemical vapor deposition method combined with solution doping technique and drawn into a core/clad size of 25/400 μm. The numerical aperture of the TDF is 0.1. The concentration of Tm2O3 and Al2O3 are 2.6 wt% and 1.01 wt%, respectively, measured by an electron probe micro-analyzer. The cladding absorption is 3 dB/m at 793 nm measured by cut-back method. The oscillator consists of 8 m 25/400 TDF mentioned above and a pair of fiber Bragg gratings. The oscillator yields maximum power of 91 W with pump power of 202 W and a 3 dB spectral bandwidth as narrow as 75 pm. In the amplifier stage, the bi-directional pumping scheme is employed. The narrow linewidth seed with output power of 57 W is scaled to 530 W through one-stage amplification, corresponding to a slope efficiency of 50%. The central wavelength of the Tm-doped MOPA is 1980.89 nm and the linewidth is broadened to 0.11 nm at 530 W. The measured M 2 factor at 100 W is less than 1.3. Neither obvious amplified spontaneous emission nor non-linear effect is observed, and the output power is only limited by pump power. To the best of our knowledge, this is the highest output power of TDF at present.
-
Keywords:
- fiber fabrication /
- fiber laser /
- high power Tm-doped amplifier
[1] Jauregui C, Jens L, Andreas T 2013 Nat. Photonics 7 861Google Scholar
[2] Shima K, Ikoma S, Uchiyama K, Takubo Y, Kashiwagi M, Tanaka D 2018 Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems San Francisco, United States, February 26, 2018 p105120C
[3] Kliner D A V, Victor B, Rivera C, Fanning G, Balsley D, Farrow R L, Kennedy K, Hampton S, Hawke R, Soukup E, Reynolds M, Hodges A, Emery J, Brown A, Almonte K, Nelson M, Foley B, Dawson D, Hemenway D M, Urbanek W, DeVito M, Bao L, Koponen J, Gross K 2018 Proc. SPIE 10513, Components and Packaging for Laser Systems IV San Francisco, United States, February 26, 2018 p105130S
[4] Lin H H, Xu L X, Li C Y, Shu Q, Chu Q H, Xie L H, Guo C, Zhao P F, Li Z B, Wang J J, Jing F, Tang X 2019 Results in Phys. 14 102479
[5] Mingareev I, Weirauch F, Olowinsky A, Shah L, Kadwani P, Richardson M 2012 Opt. Laser Technol. 44 2095Google Scholar
[6] Michalska M, Brojek W, Rybak Z, Sznelewski P, Mamajek M, Swiderski J 2016 Laser Phys. Lett. 13 115101Google Scholar
[7] Hemming A, Simakov N, Oermann M, Carter A, Haub J 2016 Conference on Lasers and Electro-Optics (CLEO) San Jose, United States, June 5–10, 2016 p1
[8] Bremer K, Pal A, Yao S, Lewis E, Sen R, Sun T, Grattan K T V 2013 Appl. Opt. 52 3957Google Scholar
[9] Ehrenreich T, Leveille R, Majid I, Tankala K, Rines G, Moulton P 2010 Photonics West 2010: LASE Beijing, China, January 23–28, 2010 p758016
[10] Walbaum T, Heinzig M, Schreiber T, Eberhardt R, Tünnermann A 2016 Opt. Lett. 41 2632Google Scholar
[11] Xing Y B, Liao L, Bu F, Wang Y B, Peng J G, Dang N L, Li J Y 2015 Chin. Phys. Lett. 32 034204Google Scholar
[12] Yao W, Shao Z, Shen C, Zhao Y, Chen H, Shen D 2017 Laser Applications Conference Nagoya, Aichi Japan, October 1−5 2017 pJTu2A−33
[13] Yao W, Shen C, Shao Z, Wang J, Wang F, Zhao Y, Shen D 2018 Appl. Opt. 57 5574Google Scholar
[14] 邢颍滨, 叶宝圆, 蒋作文, 戴能利, 李进延 2014 物理学报 63 014209Google Scholar
Xing Y B, Ye B Y, Jiang Z W, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 014209Google Scholar
[15] Lee Y W, Ling H Y, Lin Y H, Jiang S 2015 Opt. Mater. Express 5 549Google Scholar
[16] Darwich D, Dauliat R, Jamier R, Benoit A, Auguste J L, Grimm S, Kobelke J, Schwuchow A, Schuster K, Roy P 2016 Opt. Lett. 41 384Google Scholar
[17] Lou F G, Kuan P W, Zhang L, Wang S, Zhou Q, Wang M, Feng S, Li K F, Yu C L, Hu L L 2014 Opt. Mater. Express 4 1267Google Scholar
[18] 孟佳, 张伟, 赵开祺, 余婷, 吴闻迪, 于春雷, 李璇, 李兴冀, 叶锡生, 曹清 2019 中国光学 12 1109Google Scholar
Meng J, Zhang W, Zhao K Q, Yu T, Wu W D, Yu C L, Li X, Li X J, Ye X S, Cao Q 2019 Chin. Opt. 12 1109Google Scholar
[19] 衣永青, 王东波, 梁小红, 段云峰, 宁鼎 2010 激光与红外 40 264Google Scholar
Yi Y Q, Wang D B, Liang X H, Duan Y F, Ning D 2010 Laser & Infrared 40 264Google Scholar
[20] 邢颍滨 2016 博士学位论文 (武汉: 华中科技大学)
Xing Y B 2016 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[21] Muhd-Yassin S Z, Omar N Y M, Abdul-Rashid H A 2018 Optimized Fabrication of Thulium Doped Silica Optical Fiber Using MCVD (Singapore: Springer) pp1–35
[22] Jackson S D, Mossman S 2003 Appl. Opt. 42 2702Google Scholar
[23] Jackson S D 2004 Opt. Commun. 230 197Google Scholar
[24] Wang Y Y, Gao C, Tang X, Zhan H, Peng K, Ni L, Liu S, Li Y W, Guo C, Wang X L, Zhang L H, Y J, Jiang L, Lin H H, Wang J J, Jing F, Lin A X 2018 J. Light. Technol. 36 3396Google Scholar
[25] Jauncey M, Reekie L, Mears R J, Rowe C J 1987 Opt. Lett. 12 164Google Scholar
[26] Lapointe M, Piché M 2009 Proc. SPIE 7386, Photonics North Quebec, Canada, August 4, 2009 p73860S
[27] 杨昌盛, 徐善辉, 李灿, 莫树培, 冯洲明, 姜中宏, 杨中民 2013 中国科学 43 1407Google Scholar
Yang C S, Yu S H, Li C, Mo S P, Feng Z M, Jiang Z H, Yang Z M 2013 Scientia Sinica 43 1407Google Scholar
[28] Daniel J M O, Simakov N, Hemming A, Clarkson W A, Haub J 2016 Opt. Express 24 18592Google Scholar
[29] Xin G, Yao T, Sun H, Scott S M, Shao D, Wang G, Lian J 2015 Science 349 1083Google Scholar
[30] Ramírez-Martínez N J, Núez-Velázquez M, Umnikov A A, Sahu J K 2019 Opt. Express 27 196Google Scholar
-
表 1 25/400双包层掺Tm3+石英光纤的制备参数(1 sccm = 1 mL/min)
Table 1. Fabrication parameters of the 25/400 double clad Tm3+-doped silica fiber.
光纤制备参数 数值 疏松层沉积温度/℃ 1730 SiCl4进料速度/sccm 100 AlCl3/TmCl3溶液配比 1.8 溶液浸泡时间/h 2 预烧结温度/℃ 1700 烧结温度/℃ 2000 -
[1] Jauregui C, Jens L, Andreas T 2013 Nat. Photonics 7 861Google Scholar
[2] Shima K, Ikoma S, Uchiyama K, Takubo Y, Kashiwagi M, Tanaka D 2018 Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems San Francisco, United States, February 26, 2018 p105120C
[3] Kliner D A V, Victor B, Rivera C, Fanning G, Balsley D, Farrow R L, Kennedy K, Hampton S, Hawke R, Soukup E, Reynolds M, Hodges A, Emery J, Brown A, Almonte K, Nelson M, Foley B, Dawson D, Hemenway D M, Urbanek W, DeVito M, Bao L, Koponen J, Gross K 2018 Proc. SPIE 10513, Components and Packaging for Laser Systems IV San Francisco, United States, February 26, 2018 p105130S
[4] Lin H H, Xu L X, Li C Y, Shu Q, Chu Q H, Xie L H, Guo C, Zhao P F, Li Z B, Wang J J, Jing F, Tang X 2019 Results in Phys. 14 102479
[5] Mingareev I, Weirauch F, Olowinsky A, Shah L, Kadwani P, Richardson M 2012 Opt. Laser Technol. 44 2095Google Scholar
[6] Michalska M, Brojek W, Rybak Z, Sznelewski P, Mamajek M, Swiderski J 2016 Laser Phys. Lett. 13 115101Google Scholar
[7] Hemming A, Simakov N, Oermann M, Carter A, Haub J 2016 Conference on Lasers and Electro-Optics (CLEO) San Jose, United States, June 5–10, 2016 p1
[8] Bremer K, Pal A, Yao S, Lewis E, Sen R, Sun T, Grattan K T V 2013 Appl. Opt. 52 3957Google Scholar
[9] Ehrenreich T, Leveille R, Majid I, Tankala K, Rines G, Moulton P 2010 Photonics West 2010: LASE Beijing, China, January 23–28, 2010 p758016
[10] Walbaum T, Heinzig M, Schreiber T, Eberhardt R, Tünnermann A 2016 Opt. Lett. 41 2632Google Scholar
[11] Xing Y B, Liao L, Bu F, Wang Y B, Peng J G, Dang N L, Li J Y 2015 Chin. Phys. Lett. 32 034204Google Scholar
[12] Yao W, Shao Z, Shen C, Zhao Y, Chen H, Shen D 2017 Laser Applications Conference Nagoya, Aichi Japan, October 1−5 2017 pJTu2A−33
[13] Yao W, Shen C, Shao Z, Wang J, Wang F, Zhao Y, Shen D 2018 Appl. Opt. 57 5574Google Scholar
[14] 邢颍滨, 叶宝圆, 蒋作文, 戴能利, 李进延 2014 物理学报 63 014209Google Scholar
Xing Y B, Ye B Y, Jiang Z W, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 014209Google Scholar
[15] Lee Y W, Ling H Y, Lin Y H, Jiang S 2015 Opt. Mater. Express 5 549Google Scholar
[16] Darwich D, Dauliat R, Jamier R, Benoit A, Auguste J L, Grimm S, Kobelke J, Schwuchow A, Schuster K, Roy P 2016 Opt. Lett. 41 384Google Scholar
[17] Lou F G, Kuan P W, Zhang L, Wang S, Zhou Q, Wang M, Feng S, Li K F, Yu C L, Hu L L 2014 Opt. Mater. Express 4 1267Google Scholar
[18] 孟佳, 张伟, 赵开祺, 余婷, 吴闻迪, 于春雷, 李璇, 李兴冀, 叶锡生, 曹清 2019 中国光学 12 1109Google Scholar
Meng J, Zhang W, Zhao K Q, Yu T, Wu W D, Yu C L, Li X, Li X J, Ye X S, Cao Q 2019 Chin. Opt. 12 1109Google Scholar
[19] 衣永青, 王东波, 梁小红, 段云峰, 宁鼎 2010 激光与红外 40 264Google Scholar
Yi Y Q, Wang D B, Liang X H, Duan Y F, Ning D 2010 Laser & Infrared 40 264Google Scholar
[20] 邢颍滨 2016 博士学位论文 (武汉: 华中科技大学)
Xing Y B 2016 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[21] Muhd-Yassin S Z, Omar N Y M, Abdul-Rashid H A 2018 Optimized Fabrication of Thulium Doped Silica Optical Fiber Using MCVD (Singapore: Springer) pp1–35
[22] Jackson S D, Mossman S 2003 Appl. Opt. 42 2702Google Scholar
[23] Jackson S D 2004 Opt. Commun. 230 197Google Scholar
[24] Wang Y Y, Gao C, Tang X, Zhan H, Peng K, Ni L, Liu S, Li Y W, Guo C, Wang X L, Zhang L H, Y J, Jiang L, Lin H H, Wang J J, Jing F, Lin A X 2018 J. Light. Technol. 36 3396Google Scholar
[25] Jauncey M, Reekie L, Mears R J, Rowe C J 1987 Opt. Lett. 12 164Google Scholar
[26] Lapointe M, Piché M 2009 Proc. SPIE 7386, Photonics North Quebec, Canada, August 4, 2009 p73860S
[27] 杨昌盛, 徐善辉, 李灿, 莫树培, 冯洲明, 姜中宏, 杨中民 2013 中国科学 43 1407Google Scholar
Yang C S, Yu S H, Li C, Mo S P, Feng Z M, Jiang Z H, Yang Z M 2013 Scientia Sinica 43 1407Google Scholar
[28] Daniel J M O, Simakov N, Hemming A, Clarkson W A, Haub J 2016 Opt. Express 24 18592Google Scholar
[29] Xin G, Yao T, Sun H, Scott S M, Shao D, Wang G, Lian J 2015 Science 349 1083Google Scholar
[30] Ramírez-Martínez N J, Núez-Velázquez M, Umnikov A A, Sahu J K 2019 Opt. Express 27 196Google Scholar
Catalog
Metrics
- Abstract views: 9554
- PDF Downloads: 289
- Cited By: 0