Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of laser illumination conditions on focusing performance of super-oscillatory lens

Liu Kang He Tao Liu Tao Li Guo-Qing Tian Bo Wang Jia-Yi Yang Shu-Ming

Citation:

Effect of laser illumination conditions on focusing performance of super-oscillatory lens

Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming
PDF
HTML
Get Citation
  • Super-oscillatory lens (SOL), a new type of planar optical element developed in recent years, may play an important role in the integrated optics, microscopy, advanced sensor, and astronomy. Based on the vectorial angular spectrum theory and genetic algorithm, both binary amplitude-type and phase-type SOLs are designed. Various sub-diffraction focusing properties can be realized by optimizing the design procedure. In order to investigate the focusing characteristics of SOLs under different illumination conditions, rigorous electromagnetic simulation calculations of the diffracted focusing light field are implemented by the finite-difference time-domain method. The results show that when the beam waist radius w0 of the illuminating laser is less than the SOL radius a, not only the capability of super-diffraction limit focusing will decrease significantly, but also the intensity of the focal spot will attenuate by more than 50%. Comparing with the amplitude-type SOL, the waist radius w0 has a strong effect on the phase-type SOL and causes a significant focus to shift in the positive direction. However, if w0 is larger than 2a, the ideal focusing characteristics of SOL can be maintained. Under the condition of oblique illumination, the high numerical aperture amplitude-type SOL generally only allows a small inclination angle of less than 10°, while the phase-type SOL has a wide inclination adaptability (can exceed 40°) regardless of the numerical aperture. For the latter, the focal spot will expand laterally and the intensity will decrease sharply with the increase of inclination angle. As for low numerical aperture phase-type SOL, the focusing characteristics, including focal spot size, focusing intensity and the angular position of the focus, can keep stable within an inclination angle of 18°. For imaging infinitely distant objects, the oblique illumination will produce a fluctuating field curvature and significant negative distortion for high numerical aperture SOLs, while for the low numerical aperture SOLs, the field curvature increases with inclination angle increasing and the distortion disappears almost. The research results of this paper provide an important theoretical basis for practical applications of super-oscillatory lens in the fields of sub-diffraction light focusing, super-resolution microscopic imaging, and micro-nano processing of femtosecond laser direct writing.
      Corresponding author: Liu Tao, liu8483@xjtu.edu.cn ; Yang Shu-Ming, shuming.yang@mail.xjtu.edu.cn
    • Funds: Project supported by the Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51722509), the National Key R&D Program of China (Grant No. 2017YFB1104700), and the Natural Science Foundation for Basic Research of Shaanxi Province, China (Grant No. 2020SF-170)
    [1]

    Rogers E T F, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zhelidev N I 2012 Nat. Mater. 11 432Google Scholar

    [2]

    刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Francia G T D 1952 IL Nuovo Cimento 9 426Google Scholar

    [4]

    邱丽荣 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Qiu L R 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [5]

    Diao J S, Yuan W Z, Yu Y T, Zhu Y C, Wu Y 2016 Opt. Express 24 1924Google Scholar

    [6]

    Wu J, Wu Z X, He Y G, Yu A P, Zhang Z H, Wen Z Q, Chen G 2017 Opt. Express 25 6274Google Scholar

    [7]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Lett. 38 2742Google Scholar

    [8]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Zhang G F 2017 Appl. Opt. 56 3725Google Scholar

    [9]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Express 21 15090Google Scholar

    [10]

    Liu T, Shen T, Yang S M, Jiang Z D 2015 J. Opt. 17 035610Google Scholar

    [11]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Yang X K 2017 Opt. Commun. 393 72Google Scholar

    [12]

    Yuan G H, Rogers Edward T F, Zheludev N I 2017 Light: Sci. Appl. 6 e17036Google Scholar

    [13]

    Qin F, Huang K, Wu J F, Teng J H, Qiu C W, Hong M H 2017 Adv. Mater. 29 1602721Google Scholar

    [14]

    武靖 2018 硕士学位论文 (重庆: 重庆大学)

    Wu J 2018 M. S. Thesis (Chongqing: Chongqing university) (in Chinese)

    [15]

    Nagarajan A, Stoevelaar L P, Silvestri F, et al. 2019 Opt. Express 27 20012Google Scholar

    [16]

    Liu T, Wang T, Yang S M, Sun L, Jiang Z D 2015 Opt. Express 23 32139Google Scholar

    [17]

    Yang S M, Wang T, Liu T, Jiang Z D 2016 Opt. Commun. 372 166Google Scholar

    [18]

    Yu Y T, Li W L, Li H Y, Li M Y, Yuan W Z 2018 Nanomaterials 8 185Google Scholar

    [19]

    Ni H B, Yuan G H, Sun L D, Chang N, Zhang D, Chen R P, Jiang L Y, Chen H Y, Gu Z Z, Zhao X W 2018 RSC Adv. 8 20117Google Scholar

    [20]

    Luneburg R K 1966 Mathematical Theory of Optics (Berkeley: University of California Press) p305

    [21]

    Liu T, Yang S M, Jiang Z D 2016 Opt. Express 24 16297Google Scholar

    [22]

    Chen G, Wu Z X, Yu A P, et al. 2016 Sci. Rep. 6 37776Google Scholar

    [23]

    张蕾, 蔡阳健, 陆漩辉 2004 物理学报 53 1777Google Scholar

    Zhang L, Cai Y J, Lu X H 2004 Acta Phys. Sin. 53 1777Google Scholar

    [24]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N 2013 Appl. Phys. Lett. 102 031108Google Scholar

    [25]

    郁道银, 谈恒英 2011 工程光学 (北京: 机械工业出版社) 第118页

    Yu D Y, Tan H Y 2011 Engineering Optics (Beijing: China Machine Press) p118 (in Chinese)

  • 图 1  SOL衍射聚焦示意图

    Figure 1.  Schematic diagram of diffraction focusing of SOL.

    图 2  SOL1的聚焦光场FDTD计算结果 (a) 轴向光强分布; (b) 焦平面内横向光强分布(Y方向)

    Figure 2.  Focused light field of SOL1 by FDTD simulation: (a) On-axis intensity distribution; (b) transverse intensity distribution in the focal plane (Y-direction).

    图 3  SOL聚焦性能变化(FDTD) (a) 光斑横向尺寸; (b) 光斑中心强度

    Figure 3.  Focusing performance of SOL (FDTD): (a) Transverse size; (b) central intensity.

    图 4  SOL2的聚焦光场FDTD计算结果 (a) 轴向光强分布; (b) 焦平面内横向光强分布(Y方向)

    Figure 4.  Focused light field of SOL2 by FDTD simulation: (a) On-axis intensity distribution; (b) transverse intensity distribution in the focal plane (Y-direction).

    图 5  SOL1聚焦光斑电场分布的FDTD结果 (a) 均匀平面波照明; (b) w0 = a/2的高斯光束照明

    Figure 5.  Electric field distribution of SOL1 by FDTD simulation: (a) Uniform plane beam illumination; (b) w0 = a/2 Gaussian beam illumination.

    图 6  BG径向偏振光束照明条件下SOL聚焦光场的VAS计算结果 (a), (b) SOL1; (c), (d) SOL2

    Figure 6.  Focused light intensity of SOL by VAS calculation under BG radially polarized illumination: (a), (b) SOL1; (c), (d) SOL2.

    图 7  SOL对倾斜平行光的衍射聚焦成像示意图

    Figure 7.  Schematic diagram of diffraction focused imaging by SOL under oblique illumination.

    图 8  倾斜平行光照明的SOL衍射聚焦示意图

    Figure 8.  Schematic diagram of diffraction focusing by SOL under oblique illumination.

    图 9  振幅型SOL的倾斜照明FDTD聚焦计算结果 (a), (c), (e) SOL5; (b), (d), (f) SOL6

    Figure 9.  Focusing results of amplitude-type SOL under oblique illumination: (a), (c), (e) SOL5; (b), (d), (f) SOL6.

    图 10  倾斜照明SOL的聚焦光斑尺寸 (a) FWHMx ; (b) FWHMz

    Figure 10.  Focal spot size of SOL under oblique illumination: (a) FWHMx ; (b) FWHMz .

    图 11  不同照明角度下SOL的聚焦光斑强度

    Figure 11.  Focal intensity of SOL varying with oblique illumination angle.

    图 12  聚焦光斑角位置变化 (a) $\omega $-$\omega '$关系曲线; (b)$\omega $-$\varGamma $关系曲线

    Figure 12.  Angle position of focusing spot: (a) $\omega $-$\omega '$; (b) $\omega $-$\varGamma $.

    图 13  SOL的场曲 (a) SOL3; (b) SOL4

    Figure 13.  Field curvature of SOL: (a) SOL3; (b) SOL4.

    表 1  优化设计的SOL结构参数

    Table 1.  Structural parameters of optimized SOL.

    SOL类型r/μmD/μmfsol/μmNAri /μmti
    SOL1振幅0.2163.50.92[0.2, 0.4, 1.0, 1.2, 2.0, 2.2, 2.4, 2.6, 3.2,
    3.6, 3.8, 4.0, 4.2, 4.6, 4.8, 5.2, 5.4,
    6.0, 6.4, 6.8, 7.0, 7.4, 7.6, 8.0]
    [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
    0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    SOL2相位0.2163.50.92[0.2, 0.6, 1.0, 1.2, 1.6, 1.8, 2.0, 2.4,
    3.0, 3.2, 4.8, 5.0, 5.4, 5.8, 6.2,
    6.6, 6.8, 7.2, 7.4, 8.0]
    [–1, 1, –1, 1, –1, 1, –1, 1,
    –1, 1, –1, 1, –1, 1,
    –1, 1, –1, 1, –1, 1]
    SOL3相位0.2102.00.93[0.473, 0.885, 1.458, 1.969, 2.382,
    2.842, 3.044, 4.239, 4.745, 5.000]
    [1, j, 1, j, 1, j, 1, j, 1, j]
    SOL4相位0.2109.90.45[0.268, 0.468, 1.165, 1.365, 1.734,
    3.189, 3.399, 4.278, 4.792, 5.000]
    [j, 1, j, 1, j, 1, j, 1, j, 1]
    SOL5振幅0.2101.90.93[0.600, 0.899, 1.915, 2.190, 2.440,
    3.756, 4.076, 4.357, 4.769, 5.000]
    [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    SOL6振幅0.21010.10.44[0.300, 0.506, 1.248, 1.460, 1.660, 2.885,
    3.085, 3.335, 3.755, 4.094, 4.294, 5.000]
    [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    DownLoad: CSV
  • [1]

    Rogers E T F, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zhelidev N I 2012 Nat. Mater. 11 432Google Scholar

    [2]

    刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Francia G T D 1952 IL Nuovo Cimento 9 426Google Scholar

    [4]

    邱丽荣 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Qiu L R 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [5]

    Diao J S, Yuan W Z, Yu Y T, Zhu Y C, Wu Y 2016 Opt. Express 24 1924Google Scholar

    [6]

    Wu J, Wu Z X, He Y G, Yu A P, Zhang Z H, Wen Z Q, Chen G 2017 Opt. Express 25 6274Google Scholar

    [7]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Lett. 38 2742Google Scholar

    [8]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Zhang G F 2017 Appl. Opt. 56 3725Google Scholar

    [9]

    Liu T, Tan J B, Liu J, Wang H T 2013 Opt. Express 21 15090Google Scholar

    [10]

    Liu T, Shen T, Yang S M, Jiang Z D 2015 J. Opt. 17 035610Google Scholar

    [11]

    Liu T, Liu Q, Yang S M, Jiang Z D, Wang T, Yang X K 2017 Opt. Commun. 393 72Google Scholar

    [12]

    Yuan G H, Rogers Edward T F, Zheludev N I 2017 Light: Sci. Appl. 6 e17036Google Scholar

    [13]

    Qin F, Huang K, Wu J F, Teng J H, Qiu C W, Hong M H 2017 Adv. Mater. 29 1602721Google Scholar

    [14]

    武靖 2018 硕士学位论文 (重庆: 重庆大学)

    Wu J 2018 M. S. Thesis (Chongqing: Chongqing university) (in Chinese)

    [15]

    Nagarajan A, Stoevelaar L P, Silvestri F, et al. 2019 Opt. Express 27 20012Google Scholar

    [16]

    Liu T, Wang T, Yang S M, Sun L, Jiang Z D 2015 Opt. Express 23 32139Google Scholar

    [17]

    Yang S M, Wang T, Liu T, Jiang Z D 2016 Opt. Commun. 372 166Google Scholar

    [18]

    Yu Y T, Li W L, Li H Y, Li M Y, Yuan W Z 2018 Nanomaterials 8 185Google Scholar

    [19]

    Ni H B, Yuan G H, Sun L D, Chang N, Zhang D, Chen R P, Jiang L Y, Chen H Y, Gu Z Z, Zhao X W 2018 RSC Adv. 8 20117Google Scholar

    [20]

    Luneburg R K 1966 Mathematical Theory of Optics (Berkeley: University of California Press) p305

    [21]

    Liu T, Yang S M, Jiang Z D 2016 Opt. Express 24 16297Google Scholar

    [22]

    Chen G, Wu Z X, Yu A P, et al. 2016 Sci. Rep. 6 37776Google Scholar

    [23]

    张蕾, 蔡阳健, 陆漩辉 2004 物理学报 53 1777Google Scholar

    Zhang L, Cai Y J, Lu X H 2004 Acta Phys. Sin. 53 1777Google Scholar

    [24]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N 2013 Appl. Phys. Lett. 102 031108Google Scholar

    [25]

    郁道银, 谈恒英 2011 工程光学 (北京: 机械工业出版社) 第118页

    Yu D Y, Tan H Y 2011 Engineering Optics (Beijing: China Machine Press) p118 (in Chinese)

  • [1] Duan Mei-Gang, Zhao Ying, Zuo Hao-Yi. Focusing scattering light field with different states based on iterative algorithm. Acta Physica Sinica, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [2] Gao Si, Wang Zi-Han, Hua Jian-Guan, Li Qian-Kun, Li Ai-Wu, Yu Yan-Hao. Sub-diffraction-limit fabrication of sapphire by femtosecond laser direct writing. Acta Physica Sinica, 2017, 66(14): 147901. doi: 10.7498/aps.66.147901
    [3] Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping. Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses. Acta Physica Sinica, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [4] Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou. InSb based subwavelength array for terahertz wave focusing. Acta Physica Sinica, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [5] Ren Zhi-Jun, Li Xiao-Dong, Jin Hong-Zhen. Generation of a family of Pearcey beams and their optical structure. Acta Physica Sinica, 2015, 64(23): 234205. doi: 10.7498/aps.64.234205
    [6] Chen Li-Cheng, Zhang Dong-Xian, Zhang Hai-Jun, Wang Xu-Long-Qi. Color tuning based on micro-nano structure and metal nanolayer. Acta Physica Sinica, 2015, 64(3): 038102. doi: 10.7498/aps.64.038102
    [7] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [8] Zhu Xiao-Min, Ren Xin-Cheng, Guo Li-Xin. Study on wide-band scattering from rectangular cross-section above rough land surface with exponential type distribution using FDTD. Acta Physica Sinica, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [9] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [10] Wang Zheng, Gao Chun-Qing, Xin Jing-Tao. Focusing properties of the high order vector beam by a high numerical aperture lens. Acta Physica Sinica, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [11] Xin Jing-Tao, Gao Chun-Qing, Li Chen, Wang Zheng. Propagation of helical beams through amplitude diffractive optical elements and the measurement of topological charge. Acta Physica Sinica, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [12] Ren Xin-Cheng, Guo Li-Xin, Jiao Yong-Chang. Investigation of electromagnetic scattering interaction between the column with rectangular cross-section and rough land surface covered with snow using finite difference time domain method. Acta Physica Sinica, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [13] Zhao Ding. Research on feasibility of closed and offset PCM focusing structures for sheet electron beams. Acta Physica Sinica, 2010, 59(3): 1712-1720. doi: 10.7498/aps.59.1712
    [14] Li Min, Zhang Zhi-You, Shi Sha, Du Jing-Lei. Optimization and analysis of the structural parameters of subwavelength metal focusing lens. Acta Physica Sinica, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [15] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan, Zhao Ke-Jie. Structure and extinction properties of Mg2Si crystal. Acta Physica Sinica, 2009, 58(10): 6889-6893. doi: 10.7498/aps.58.6889
    [16] Liu Bin, Jin Wei-Qi, Dong Li-Quan. The diffraction effect in a thermal imaging system with a front wire grid. Acta Physica Sinica, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [17] Jiang Xiu-Juan, Zhou Shen-Lei, Lin Zun-Qi, Zhu Jian. Improving of the irradiation uniformity on targets with a diffraction-weakened lens array and spectral dispersion smoothing. Acta Physica Sinica, 2006, 55(11): 5824-5828. doi: 10.7498/aps.55.5824
    [18] Liu Yu-Ling, Lu Zhen-Wu. Numerical analysis of the dispersion of subwavelength diffractive microlens. Acta Physica Sinica, 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [19] Zhang Jun, Zhang Jie, Chen Qing, Peng Lian-Mao, Cang Yu, Wang Huai-Bin, Zhong Jia-Yong. . Acta Physica Sinica, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [20] LI CUI-LIAN, LIU YOU-YAN. THE DIFFRACTION PROPERTIES FOR THE ONE-DIMENSIONAL FIBONACCI-CLASS QUASILATTICES. Acta Physica Sinica, 2001, 50(2): 217-222. doi: 10.7498/aps.50.217
Metrics
  • Abstract views:  7386
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2020
  • Accepted Date:  30 May 2020
  • Available Online:  05 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回