Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-resonant and low-frequency triboelectric-electromagnetic hybridized nanogenerator for vibration energy

Chen Yan-Hui Xie Wei-Bo Dai Ke-Jie Gao Ling-Xiao Lu Shan Chen Xin Li Yu-Hang Mu Xiao-Jing

Citation:

Non-resonant and low-frequency triboelectric-electromagnetic hybridized nanogenerator for vibration energy

Chen Yan-Hui, Xie Wei-Bo, Dai Ke-Jie, Gao Ling-Xiao, Lu Shan, Chen Xin, Li Yu-Hang, Mu Xiao-Jing
PDF
HTML
Get Citation
  • As the age of the internet of everything begins, the demand for various sensors to communicate with each other is soaring. As the lifeblood of the sensing system, reliable energy supply is the key consideration. Environmental mechanical energy harvesting has been a key technology for self-powering sensing system, which can convert mechanical energy into electric energy. Here, we present a non-resonant triboelectric-electromagnetic hybridized nanogenerator, which can scavenge low-frequency vibration energy from environmental vibration. In the device a rotating gyro is used as a core component. An embedded magnet and four coils arranged evenly around at the bottom of the shell form an electromagnetic generator (EMG), and a piece of triboelectric film pasted on the outer surface of the gyro together with a bottom electrode constitutes a triboelectric nanogenerator, (TENG). With the design of rotating gyro, a high sensitive energy capture can be realized under low frequency and irregular vibration. Under the rotation and revolution of the gyro, the triboelectric and electromagnetic energy will be generated. Through theoretical analysis and software simulation, the working principle of the device is expounded. Based on a linear motor platform, the influences of oscillation frequency and amplitude are systematically studied, and the maximum power of 0.084 mW under a loading resistance of 20 MΩ and 4.61 mW under 800 Ω are obtained at a driving frequency of 2 Hz by the TENG and EMG, respectively. The energy conversion efficiency of the system is 0.45%. Moreover, by placing the devices on the legs and arms of the human body respectively, the ability of the hybridized nanogenerator to capture the simple movement energy of the human body is further verified. After that, a self-powering pedometer module is successfully integrated with the energy storage unit. Under the excitation provided by running a body, the hybridized nanogenerator can provide a 20-s pedometer normal operation after charging a capacitance of 100 μF to 3.2 V. This research not only provides a new idea for the efficient acquisition of vibration energy, but also has potential applications in the energy supply of self-powered sensors.
      Corresponding author: Gao Ling-Xiao, 15922620987@163.com ; Mu Xiao-Jing, mxjacj@cqu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2004800), the Fund for Cultivating Talent of Chongqing University, China (Grant No. CQU2019HBRC1A04), and the Fundamental Reserach Funds for Central Universities, China (Grant No. 2019CDCGGD320)
    [1]

    Bai Y, Xu L, He C, Zhu L P, Yang X D, Jiang T, Nie J H, Zhong W, Wang Z L 2019 Nano Energy 66 104117Google Scholar

    [2]

    Xia F B, Pang Y K, Liu G X, Wang S W, Li W, Zhang C, Wang Z L 2019 Nano Energy 61 1Google Scholar

    [3]

    An J, Wang Z M, Jiang T, Liang X, Wang Z L 2019 Adv. Funct. Mater. 29 1904867Google Scholar

    [4]

    Liu G L, Guo H Y, Xu S X, Hu C G, Wang Z L 2019 Adv. Energy Mater. 9 1900801

    [5]

    Xu M Y, Zhao T C, Wang C, S. L. Zhang S L, Li Z, Pan X X, Wang Z L 2019 ACS Nano 13 1932

    [6]

    Guo H, Wen Z, Zi Y, Yeh M, Wang J, Zhu L, Hu C, Wang Z L 2016 Adv. Energy Mater. 6 1501593Google Scholar

    [7]

    Wen Z, Guo H, Zi Y, Yeh M, Wang X, Deng J, Wang J, Li S, Hu C, Zhu L, Wang Z L 2016 ACS Nano 10 6526Google Scholar

    [8]

    Gao L X, Lu S, Xie W B, Chen X, Wu L K, Wang T T, Wang A B, Yue C Q, Tong D Q, Lei W Q, Yu H, He X B, Mu X J, Wang Z L, Yang Y 2020 Nano Energy 72 104684Google Scholar

    [9]

    Shao H, Cheng P, Chen R, Xie L, Sun N, Shen Q, Chen X, Zhu Q, Zhang Y, Liu Y, Wen Z, Sun X 2018 Nano-Micro Lett. 10 54Google Scholar

    [10]

    Gao L X, Hu D L, Qi M K, Gong J, Zhou H, Chen X, Chen J F, Cai J, Wu L K, Hu N, Yang Y, Mu X J 2018 Nanoscale 10 19781Google Scholar

    [11]

    Gao L X, Chen X, Lu S, Zhou H, Xie W B, Chen J F, Qi M K, Yu H, Mu X J, Wang Z L, Yang Y 2019 Adv. Energy Mater. 10 1902725

    [12]

    Saha C, Donnell T, Wang N, McCloskey P 2017 Sensors & Actuat. A-Phys. 147 248

    [13]

    Koukharenko E, Beeby S, Tudor M, White N, Donnell T, Saha C, Kulkarni S, Roy S 2006 Microsyst. Technolo. 12 1071Google Scholar

    [14]

    Grishchuk P 2003 Physics 6 0306013

    [15]

    Liu H C, Hou C, Lin J H, Li Y F, Shi Q F, Chen T, Sun L N, Lee C K 2018 Appl. Phys. Lett. 113 203901Google Scholar

    [16]

    Wang Z L 2017 Nature 542 159Google Scholar

    [17]

    Wang J Y, Pan L, Guo H Y, Zhang B B, Zhang R R, Wu Z Y, Wu C S, Yang L J, Liao R J, Wang Z L 2019 Adv. Energy Mater. 9 1802892Google Scholar

    [18]

    Hao C C, He J, Zhai C, Jia W, Song L L, Cho J D, Chou X J, Xue C Y 2019 Nano Energy 58 147

    [19]

    Hou C, Chen T, Li Y F, Huang M J, Shi Q F, Liu H C, Sun L N, Lee C K 2019 Nano Energy 63 103871Google Scholar

    [20]

    Chen X, Gao L X, Chen J F, Lu S, Zhou H, Wang T T, Wang A B, Zhang Z F, Guo S F, Mu X J, Wang Z L, Yang Y 2020 Nano Energy 69 104440Google Scholar

    [21]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533Google Scholar

    [22]

    Niu S M, Liu Y, Wang S H, Lin L, Zhou Y S, Hu Y F, Wang Z L 2013 Adv. Mater. 25 6184Google Scholar

    [23]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580Google Scholar

  • 图 1  系统结构模型 (a)电磁-摩擦复合能量收集器模型图; (b) 复合能量收集器结构分解示意图; (c) 陀螺刨面图; (d), (e) 电磁-摩擦复合能量收集器的正反面照片

    Figure 1.  The structure model of the system: (a) The model diagram of the hybridized nanogenerator; (b) schematic diagram of structural decomposition of the hybridized nanogenerator; (c) the cross-section of the gyro; (d), (e) digital photograph of the TENG and EMG hybridized nanogenerator.

    图 2  复合能量收集器的工作原理及其仿真 (a) 摩擦发电单元的工作原理; (b) 摩擦发电单元的仿真; (c)电磁发电单元的工作原理; (d) 电磁发电单元的其仿真

    Figure 2.  The operating principle and simulation of the hybridized nanogenerator: (a) The operating principle of the TENG; (b) the simulation of the TENG; (c) the operating principle of the EMG; (d) the simulation of the EMG.

    图 3  摩擦发电机的输出与陀螺滚动速度的关系 (a) 摩擦发电机的电流与陀螺滚动速度的关系; (b) 摩擦发电机的电压与陀螺滚动速度的关系

    Figure 3.  The relation between the output performance of TENG and the rolling speed of gyro: (a) The relation between the output current of TENG and the rolling speed of gyro; (b) the relation between the output voltage of TENG and the rolling speed of gyro.

    图 4  在线性马达不同激励频率下复合能量收集器的输出特性 (a) 1.5 Hz频率下电磁发电机的输出特性; (b) 不同频率下电磁发电机的输出特性; (c) 1.5 Hz频率下摩擦发电机的输出特性; (d) 不同频率下摩擦发电机的输出特性

    Figure 4.  The output characteristics of the hybridized nanogenerator excited by a linear motor: (a) The output characteristics of the EMG in 1.5 Hz; (b) the output characteristics of the EMG in different frequencies; (c) the output characteristics of the TENG in 1.5 Hz; (d) the output characteristics of the TENG in different frequencies.

    图 5  线性马达不同往复行程激励下复合能量收集器的输出特性 (a) 不同振动幅度下电磁发电机的输出特性; (b) 不同振动幅度下摩擦发电机的输出特性

    Figure 5.  The output characteristics of the hybridized nanogenerator under the excitation of different reciprocating stroke of the linear motor: (a) The output characteristics of the EMG under different amplitude; (b) output characteristics of TENG at different amplitudes.

    图 6  复合能量收集器的功率与能量 (a) 摩擦发电机在不同负载下的输出电压与输出功率; (b) 电磁发电机在不同负载下的输出电压与输出功率; (c) 复合能量收集器对不同电容的充电曲线; (d) 单次外部激励的机械能量; (e) 摩擦发电机在20 MΩ下的俘能曲线; (f) 电磁发电机在800 Ω下的俘能曲线

    Figure 6.  The power and energy of the hybridized nanogenerator: (a) The voltage and power curves of TENG under different loads; (b) the voltage and power curves of EMG under different loads; (c) the charging curves of the hybridized nanogenerator for different capacitors; (d) the incentive energy of a single excitation; (e) the output energy of the TENG under 20 MΩ; (f) the output energy of the EMG under 800 Ω.

    图 7  复合能量收集器对人体运动能的收集能力 (a) 置于腿部, 电磁发电机对人体能量收集的输出曲线; (b) 置于腿部, 摩擦发电机对人体能量收集的输出曲线; (c) 置于手臂, 电磁发电机对人体能量收集的输出曲线; (d) 置于手臂, 摩擦发电机对人体能量收集的输出曲线

    Figure 7.  The ability of the hybridized nanogenerator to the kinetic energy of the human body: (a) The outputs of the EMG from human body when it is placed on the leg; (b) the outputs of the TENG from human body when it is placed on the leg; (c) the outputs of the EMG from human body when it is placed on the arm; (d) the outputs of the TENG from human body when it is placed on the arm.

    图 8  复合能量收集器在自供电传感器中的应用实验 (a) 自供电计步器模块图; (b) 复合能量收集器对100 µF电容的充电曲线; (c) 自供电计步器实物图

    Figure 8.  The application of the hybridized nanogenerator in self-powered sensor: (a) The diagram of self-powered pedometer module; (b) the charging curves of the hybridized nanogenerator for a capacitor of 100 µF; (c) the photograph of self-powered pedometer module.

  • [1]

    Bai Y, Xu L, He C, Zhu L P, Yang X D, Jiang T, Nie J H, Zhong W, Wang Z L 2019 Nano Energy 66 104117Google Scholar

    [2]

    Xia F B, Pang Y K, Liu G X, Wang S W, Li W, Zhang C, Wang Z L 2019 Nano Energy 61 1Google Scholar

    [3]

    An J, Wang Z M, Jiang T, Liang X, Wang Z L 2019 Adv. Funct. Mater. 29 1904867Google Scholar

    [4]

    Liu G L, Guo H Y, Xu S X, Hu C G, Wang Z L 2019 Adv. Energy Mater. 9 1900801

    [5]

    Xu M Y, Zhao T C, Wang C, S. L. Zhang S L, Li Z, Pan X X, Wang Z L 2019 ACS Nano 13 1932

    [6]

    Guo H, Wen Z, Zi Y, Yeh M, Wang J, Zhu L, Hu C, Wang Z L 2016 Adv. Energy Mater. 6 1501593Google Scholar

    [7]

    Wen Z, Guo H, Zi Y, Yeh M, Wang X, Deng J, Wang J, Li S, Hu C, Zhu L, Wang Z L 2016 ACS Nano 10 6526Google Scholar

    [8]

    Gao L X, Lu S, Xie W B, Chen X, Wu L K, Wang T T, Wang A B, Yue C Q, Tong D Q, Lei W Q, Yu H, He X B, Mu X J, Wang Z L, Yang Y 2020 Nano Energy 72 104684Google Scholar

    [9]

    Shao H, Cheng P, Chen R, Xie L, Sun N, Shen Q, Chen X, Zhu Q, Zhang Y, Liu Y, Wen Z, Sun X 2018 Nano-Micro Lett. 10 54Google Scholar

    [10]

    Gao L X, Hu D L, Qi M K, Gong J, Zhou H, Chen X, Chen J F, Cai J, Wu L K, Hu N, Yang Y, Mu X J 2018 Nanoscale 10 19781Google Scholar

    [11]

    Gao L X, Chen X, Lu S, Zhou H, Xie W B, Chen J F, Qi M K, Yu H, Mu X J, Wang Z L, Yang Y 2019 Adv. Energy Mater. 10 1902725

    [12]

    Saha C, Donnell T, Wang N, McCloskey P 2017 Sensors & Actuat. A-Phys. 147 248

    [13]

    Koukharenko E, Beeby S, Tudor M, White N, Donnell T, Saha C, Kulkarni S, Roy S 2006 Microsyst. Technolo. 12 1071Google Scholar

    [14]

    Grishchuk P 2003 Physics 6 0306013

    [15]

    Liu H C, Hou C, Lin J H, Li Y F, Shi Q F, Chen T, Sun L N, Lee C K 2018 Appl. Phys. Lett. 113 203901Google Scholar

    [16]

    Wang Z L 2017 Nature 542 159Google Scholar

    [17]

    Wang J Y, Pan L, Guo H Y, Zhang B B, Zhang R R, Wu Z Y, Wu C S, Yang L J, Liao R J, Wang Z L 2019 Adv. Energy Mater. 9 1802892Google Scholar

    [18]

    Hao C C, He J, Zhai C, Jia W, Song L L, Cho J D, Chou X J, Xue C Y 2019 Nano Energy 58 147

    [19]

    Hou C, Chen T, Li Y F, Huang M J, Shi Q F, Liu H C, Sun L N, Lee C K 2019 Nano Energy 63 103871Google Scholar

    [20]

    Chen X, Gao L X, Chen J F, Lu S, Zhou H, Wang T T, Wang A B, Zhang Z F, Guo S F, Mu X J, Wang Z L, Yang Y 2020 Nano Energy 69 104440Google Scholar

    [21]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533Google Scholar

    [22]

    Niu S M, Liu Y, Wang S H, Lin L, Zhou Y S, Hu Y F, Wang Z L 2013 Adv. Mater. 25 6184Google Scholar

    [23]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580Google Scholar

  • [1] Liu Jing-Liang, Chen Xin-Yu, Wang Rui-Ming, Wu Chun-Ting, Jin Guang-Yong. Design and analysis of 90° image rotating four-mirror non-planar ring resonator based on mid-infrared optical parametric oscillator beam quality optimization. Acta Physica Sinica, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [2] Liao Qing-Hong, Deng Wei-Can, Wen Jian, Zhou Nan-Run, Liu Nian-Hua. Phonon blockade induced by a non-Hermitian Hamiltonian in a nanomechanical resonator coupled with a qubit. Acta Physica Sinica, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [3] Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [4] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [5] Qin Li-Zhen, Zhang Zhen-Yu, Zhang Kun, Ding Jian-Qiao, Duan Zhi-Yong, Su Yu-Feng. Simulation analysis of dynamic response of the energy harvester based on diamagnetic levitation. Acta Physica Sinica, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [6] Ma Xing-Chen, Ye Rui-Feng, Zhang Tian-Le, Zhang Xiao-Qing. Vibration energy harvesting with uni-polar electret film. Acta Physica Sinica, 2016, 65(17): 177701. doi: 10.7498/aps.65.177701
    [7] Cheng Zheng-Fu, Zheng Rui-Lun. Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene. Acta Physica Sinica, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [8] Dai Xian-Zhi, Liu Xiao-Ya, Chen Lei. A broadband vibration energy harvester using double transducers and pendulum-type structures. Acta Physica Sinica, 2016, 65(13): 130701. doi: 10.7498/aps.65.130701
    [9] Wu Li-Ming, Zhang Xiao-Qing. Piezoelectric property of cross-linked polypropylene piezoelectret and its application in vibration energy harvester. Acta Physica Sinica, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [10] Tang Wei, Wang Xiao-Pu, Cao Jing-Jun. Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics. Acta Physica Sinica, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [11] Wang Xiang, Zhang Qiang, Chen Ran-Bin, Deng Zhi-Qiang, San Hai-Sheng. Radioisotope energy conversion using electrostatic vibrationto–to–electricity converters. Acta Physica Sinica, 2014, 63(2): 028501. doi: 10.7498/aps.63.028501
    [12] Zhang Xue, Wang Yong, Fan Jun-Jie, Zhu Fang, Zhang Rui. Multipactor phenomenon between metal anddielectric window. Acta Physica Sinica, 2014, 63(16): 167901. doi: 10.7498/aps.63.167901
    [13] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. The influence of anharmonicity on the surface effect in nanodiamond. Acta Physica Sinica, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [14] Chen Zhong-Sheng, Yang Yong-Min. Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams. Acta Physica Sinica, 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [15] Dai Xian-Zhi, Wen Yu-Mei, Li Ping, Yang Jin, Jiang Xiao-Fang. Vibration energy harvester based on magnetoelectric transducer. Acta Physica Sinica, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [16] Shi De-Heng, Sun Jin-Feng, Ma Heng, Zhu Zun-Lue. Investigation of analytic potential energy function, harmonic frequency and vibrational levels for the 23Σ+g state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [17] HOU XI-WEN, XIE MI, MA ZHONG-QI. FERMI RESONANCES AND VIBRATIONAL SPECTRUM FOR METHANE. Acta Physica Sinica, 1997, 46(6): 1073-1078. doi: 10.7498/aps.46.1073
    [18] ZHENG RUI-LUN, HU XIAN-QUAN. THE INFLUENCES OF ANHARMONIC VIBRATION ON CRITICAL POINT AND BOYLE CURVE OF LIQUID Ar. Acta Physica Sinica, 1994, 43(8): 1254-1261. doi: 10.7498/aps.43.1254
    [19] XIANG TIAN-XIANG, SUN SHENG, GONG SHUN-SHENG, WANG JIA-MIN. TIME RESOLVED STUDIES OF STATE TO STATE VIBRATIONAL ENERGY TRANSFER (Ⅰ)——SELF-COLLISION PROCESSES OF IDIONE MOLECULES. Acta Physica Sinica, 1990, 39(10): 1547-1554. doi: 10.7498/aps.39.1547
    [20] GAO WEN-BIN, SHEN YU-QI, J. H?GER, W. KRIEGER. VIBRATIONAL ENERGY TRANSFER STUDY OF DICHLOROMETHANE (CH2Cl2) BY LASER INDUCED FLUORESCENCE METHOD. Acta Physica Sinica, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
Metrics
  • Abstract views:  7088
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2020
  • Accepted Date:  17 June 2020
  • Available Online:  13 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回