Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sound reception pathway of the Indo-Pacific humpback dolphin

Zhang Chuang Song Zhong-Chang Zhang Yu

Citation:

Sound reception pathway of the Indo-Pacific humpback dolphin

Zhang Chuang, Song Zhong-Chang, Zhang Yu
PDF
HTML
Get Citation
  • The Indo-Pacific humpback dolphins (Sousa chinensis) are nearshore odontocetes, distributed in tropical and sub-tropical oceans. This species has been studied to unveil its ability to echolocate. Indo-Pacific humpback dolphin, like its Odontocetes companion, relies on echolocation system to navigate and detect targets, which contains a sound transmitting system in the forehead and a sound reception in the jaw. Their soft tissues present gradient sound speed and density distributions in the forehead. Solid skull, air structures and soft tissues form a natural multi-phase meta-material to modulate sounds into energy focused beams. This multi-phase property is also applied to the hearing system as revealed in current papers. Here in this work, the physical mechanism of sound reception in the Indo-Pacific humpback dolphin is studied by using the computed tomography (CT) scanning, physical measurements and numerical simulation. Hounsfield units (HUs) of the forehead tissues are extracted from CT scanning results. A linear relationship is revealed between HU and sound speed, HU and density, which are combined with HU distribution to reconstruct the sound speed and density distribution of the sound reception system. The CT scanning shows that the sound reception system located at lower head is composed of external mandibular fat, internal mandibular fat, mandible and hearing bones. Model of sound reception system is developed on the basis of CT scanning results and used in subsequent simulations. The physical process of sound reception reveals that the hearing system can guide sounds through variable pathways to reach hearing bones. Sounds can enter into the reception system along the acoustic pathways composed of mandible, external mandibular fat and internal mandibular fat. Mandibular fat and mandible form a unique sound pathway. In addition, another pathway which is composed of external mandibular fat, pan bone and internal mandibular fat can lead the sound to propagate and finally arrive at hearing bones. The diversity of acoustic pathways is applicable to a range of frequencies from 30 to 120 kHz. The variability of acoustic pathways in Indo-Pacific humpback dolphin shows the complexity of its biosonar system. The anatomy and simulation results can deepen our understanding of the mechanism of echolocation of Indo-Pacific humpback dolphin and provide references for designing man-made sound reception devices.
      Corresponding author: Zhang Yu, yuzhang@xmu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFC1407504) and the National Natural Science Foundation of China (Grant Nos. 41676023, 41276040)
    [1]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp1−21

    [2]

    Jefferson T A, Hung S K 2004 Aquat. Mamm. 30 149Google Scholar

    [3]

    Van Parijs S M, Corkeron P J 2001 J. Mar. Biol. Assoc. U. K. 81 533Google Scholar

    [4]

    王先艳, 妙星, 吴福星, 闫晨曦, 刘文华, 祝茜 2012 台湾海峡 31 225Google Scholar

    Wang X Y, Miao X, Wu F X, Yan C X, Liu W H, Zhu Q 2012 J. Oceanogr. Taiwan Strait 31 225Google Scholar

    [5]

    刘文华, 黄宗国 2000 海洋学报 22 95Google Scholar

    Liu W H, Huang Z G 2000 Acta Oceanolog. Sin. 22 95Google Scholar

    [6]

    Chen B Y, Zheng D M, Ju J F, Xu X R, Zhou K Y, Yang G 2011 Zool. Stud. 50 751

    [7]

    Li S H 2020 Science 367 1313Google Scholar

    [8]

    Fang L, Wu Y P, Wang K X, Pine M K, Wang D, Li S 2017 J. Acoust. Soc. Am. 142 771Google Scholar

    [9]

    Fang L, Li S H, Wang K X, Wang Z T, Shi W J, Wang D 2015 J. Acoust. Soc. Am. 138 1346Google Scholar

    [10]

    Wang Z T, Fang L, Shi W J, Wang K X, Wang D 2013 J. Acoust. Soc. Am. 133 2479Google Scholar

    [11]

    Song Z C, Zhang Y, Wang X Y, Wei C 2017 J. Acoust. Soc. Am. 142 EL381Google Scholar

    [12]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [13]

    Song Z C, Zhang Yu, Berggren P, Wei C 2017 J. Acoust. Soc. Am. 141 681Google Scholar

    [14]

    Song Z C, Zhang Yu, Wang X Y 2018 Europhys. Lett. 124 64004Google Scholar

    [15]

    Song Z C, Zhang Y, Mooney T A, Wang X Y, Smith A B, Xu X H 2019 Bioinspiration Boimimetics 14 016004Google Scholar

    [16]

    Purves P E, Pilleri G E 1983 Echolocation in Whales and Dolphins (London: Academic Press) pp1−631

    [17]

    Purves P E 1996 Anatomy and Physiology of the Outer and Middle Ear in Cetaceans In Whales, Dolphins, and Porpoises (Berkeley: University of California Press) pp321−380

    [18]

    Norris K S 1968 The Evolution of Acoustic Mechanisms in Odontocete Cetaceans in Evolution and Environment (New Haven: Yale University Press) pp297−324

    [19]

    Bullock T H, Grinnell A D, Ikezono E, Kameda K, Katsuki J, Nomota M, Sato O, Suga N, Yanagisawa K 1968 Z. Vergleichende Physiol. 59 117

    [20]

    McCormick J G, Wever E G, Palin J 1970 J. Acoust. Soc. Am. 48 1418Google Scholar

    [21]

    Brill R L, Sevenich M L, Sullivan T J, Sustman J D, Witt R E 1988 Mar. Mammal Sci. 4 223Google Scholar

    [22]

    Varanasi U S, Malins D C 1970 Biochemistry 9 4576Google Scholar

    [23]

    Cranford T W, McKenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hildebrand J A 2008 Anat. Rec. 291 353Google Scholar

    [24]

    Cranford T W, Krysl P, Hildebrand J A 2008 Bioinspir. Boimim. 3 016001Google Scholar

    [25]

    Aroyan J L 2001 J. Acoust. Soc. Am. 110 3305Google Scholar

    [26]

    Ketten D R 2000 Cetacean Ears In Hearing by Whales and Dolphins (New York: Springer) pp43−108

    [27]

    王丁, 王克雄, 刘仁俊, 陈佩薰, 谌刚, 王治藩, 卢文祥, 杨叔子 1989 湘潭大学自然科学学报 2 116

    Wang D, Wang K X, Liu R J, Chen P X, Shen G, Wang Z F, Lu W X, Yang S Z 1989 Nat. Sci. J. Xiangtan Univ. 2 116

    [28]

    肖友芙, 王丁, 王克雄 1993 海洋学报 15 125

    Xiao Y F, Wang D, Wang K X 1993 Acta Oceanolog. Sin. 15 125

    [29]

    王丁, 王克雄, 刘仁俊, 谌刚, 卢文祥 1988 华中理工大学学报 3 55

    Wang D, Wang K X, Liu R J, Shen G, Lu W X 1988 J. Huazhong Univ. Sci. Tech. 3 55

    [30]

    Li S H, Wang D, Wang K X, Taylor E A, Cros E, Shi W J, Wang Z T, Fang L, Chen Y F, Kong F 2012 J. Exp. Biol. 215 3055Google Scholar

    [31]

    Wei C, Zhang Y, Au W W L 2014 J. Acoust. Soc. Am. 136 423Google Scholar

  • 图 1  (a) 中华白海豚头部三维重建; (b) 中华白海豚声接收系统水平截面; (c) 中华白海豚声接收系统垂直系统

    Figure 1.  (a) Reconstruction of Indo-Pacific humpback dolphin head in three dimensions; (b) sound reception system in horizontal plane; (c) sound reception system in vertical plane.

    图 2  中华海豚头部声接收系统不同截面的声速、密度分布 (a) 水平截面(xz)声速分布; (b) 垂直截面(yz)声速分布; (c) 水平截面(xz)密度分布; (d) 垂直截面(yz)密度分布

    Figure 2.  Distributions of sound speed and density in different planes of reception system in Indo-Pacific humpback dolphin: (a) Sound speed distribution in horizontal plane; (b) sound speed distribution in vertical plane; (c) density distribution in horizontal plane; (d) density distribution in vertical plane.

    图 3  中华白海豚不同截面声接收模型网格划分 (a) 水平截面计算域; (b) 垂直截面计算域; (c) 头部水平截面声接收系统; (d) 头部垂直截面声接收系统

    Figure 3.  Meshing of sound reception models in different planes: (a) Computing domain in horizontal plane; (b) computing domain in vertical plane; (c) sound reception system in horizontal plane; (d) sound reception system in vertical plane.

    图 4  无指向性声源0°入射中华白海豚不同截面的声波传播 (a)水平截面; (b)垂直截面

    Figure 4.  Propagation plots of an omnidirectional short-duration impulse source with an incident angle of 0° in different sections: (a) Horizontal section; (b) vertical section.

    图 5  无指向性声脉冲从不同角度入射中华白海豚声接收系统水平截面的传播细节 (a) 30°; (b) 15°; (c) –15°; (d) –30°

    Figure 5.  Propagation plots of four omnidirectional short-duration impulse sources in horizontal section from different incident angles: (a) 30°; (b) 15°; (c) –15°; (d) –30°.

    图 6  无指向性声脉冲从不同角度入射中华白海豚声接收系统垂直截面的传播细节 (a) 30°; (b) 15°; (c) –15°; (d) –30°

    Figure 6.  Propagation plots of four omnidirectional short-duration impulse sources in vertical section from different incident angles: (a) 30°; (b) 15°; (c) –15°; (d) –30°.

    图 7  无指向性的单频声波从0°入射中华白海豚声接收系统不同截面的稳态声场 水平截面: (a) 30 kHz, (b) 60 kHz, (c) 120 kHz; 垂直截面: (d) 30 kHz, (e) 60 kHz, (f) 120 kHz

    Figure 7.  The sound field of omnidirectional single-frequency sound waves with an incident angle of 0° in different sections directionless single-frequency sound waves. Horizontal section: (a) 30 kHz, (b) 60 kHz, (c) 120 kHz; vertical section: (d) 30 kHz, (e) 60 kHz, (f) 120 kHz.

  • [1]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp1−21

    [2]

    Jefferson T A, Hung S K 2004 Aquat. Mamm. 30 149Google Scholar

    [3]

    Van Parijs S M, Corkeron P J 2001 J. Mar. Biol. Assoc. U. K. 81 533Google Scholar

    [4]

    王先艳, 妙星, 吴福星, 闫晨曦, 刘文华, 祝茜 2012 台湾海峡 31 225Google Scholar

    Wang X Y, Miao X, Wu F X, Yan C X, Liu W H, Zhu Q 2012 J. Oceanogr. Taiwan Strait 31 225Google Scholar

    [5]

    刘文华, 黄宗国 2000 海洋学报 22 95Google Scholar

    Liu W H, Huang Z G 2000 Acta Oceanolog. Sin. 22 95Google Scholar

    [6]

    Chen B Y, Zheng D M, Ju J F, Xu X R, Zhou K Y, Yang G 2011 Zool. Stud. 50 751

    [7]

    Li S H 2020 Science 367 1313Google Scholar

    [8]

    Fang L, Wu Y P, Wang K X, Pine M K, Wang D, Li S 2017 J. Acoust. Soc. Am. 142 771Google Scholar

    [9]

    Fang L, Li S H, Wang K X, Wang Z T, Shi W J, Wang D 2015 J. Acoust. Soc. Am. 138 1346Google Scholar

    [10]

    Wang Z T, Fang L, Shi W J, Wang K X, Wang D 2013 J. Acoust. Soc. Am. 133 2479Google Scholar

    [11]

    Song Z C, Zhang Y, Wang X Y, Wei C 2017 J. Acoust. Soc. Am. 142 EL381Google Scholar

    [12]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [13]

    Song Z C, Zhang Yu, Berggren P, Wei C 2017 J. Acoust. Soc. Am. 141 681Google Scholar

    [14]

    Song Z C, Zhang Yu, Wang X Y 2018 Europhys. Lett. 124 64004Google Scholar

    [15]

    Song Z C, Zhang Y, Mooney T A, Wang X Y, Smith A B, Xu X H 2019 Bioinspiration Boimimetics 14 016004Google Scholar

    [16]

    Purves P E, Pilleri G E 1983 Echolocation in Whales and Dolphins (London: Academic Press) pp1−631

    [17]

    Purves P E 1996 Anatomy and Physiology of the Outer and Middle Ear in Cetaceans In Whales, Dolphins, and Porpoises (Berkeley: University of California Press) pp321−380

    [18]

    Norris K S 1968 The Evolution of Acoustic Mechanisms in Odontocete Cetaceans in Evolution and Environment (New Haven: Yale University Press) pp297−324

    [19]

    Bullock T H, Grinnell A D, Ikezono E, Kameda K, Katsuki J, Nomota M, Sato O, Suga N, Yanagisawa K 1968 Z. Vergleichende Physiol. 59 117

    [20]

    McCormick J G, Wever E G, Palin J 1970 J. Acoust. Soc. Am. 48 1418Google Scholar

    [21]

    Brill R L, Sevenich M L, Sullivan T J, Sustman J D, Witt R E 1988 Mar. Mammal Sci. 4 223Google Scholar

    [22]

    Varanasi U S, Malins D C 1970 Biochemistry 9 4576Google Scholar

    [23]

    Cranford T W, McKenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hildebrand J A 2008 Anat. Rec. 291 353Google Scholar

    [24]

    Cranford T W, Krysl P, Hildebrand J A 2008 Bioinspir. Boimim. 3 016001Google Scholar

    [25]

    Aroyan J L 2001 J. Acoust. Soc. Am. 110 3305Google Scholar

    [26]

    Ketten D R 2000 Cetacean Ears In Hearing by Whales and Dolphins (New York: Springer) pp43−108

    [27]

    王丁, 王克雄, 刘仁俊, 陈佩薰, 谌刚, 王治藩, 卢文祥, 杨叔子 1989 湘潭大学自然科学学报 2 116

    Wang D, Wang K X, Liu R J, Chen P X, Shen G, Wang Z F, Lu W X, Yang S Z 1989 Nat. Sci. J. Xiangtan Univ. 2 116

    [28]

    肖友芙, 王丁, 王克雄 1993 海洋学报 15 125

    Xiao Y F, Wang D, Wang K X 1993 Acta Oceanolog. Sin. 15 125

    [29]

    王丁, 王克雄, 刘仁俊, 谌刚, 卢文祥 1988 华中理工大学学报 3 55

    Wang D, Wang K X, Liu R J, Shen G, Lu W X 1988 J. Huazhong Univ. Sci. Tech. 3 55

    [30]

    Li S H, Wang D, Wang K X, Taylor E A, Cros E, Shi W J, Wang Z T, Fang L, Chen Y F, Kong F 2012 J. Exp. Biol. 215 3055Google Scholar

    [31]

    Wei C, Zhang Y, Au W W L 2014 J. Acoust. Soc. Am. 136 423Google Scholar

  • [1] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] Xu Shou-Zhen, Xie Shi-Meng, Wu Dan, Chi Zi-Hui, Huang Lin. Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer. Acta Physica Sinica, 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [3] Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian. Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate. Acta Physica Sinica, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] Ultrasound/photoacoustic dual-modality imaging based on an acoustic scanning galvanometer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211394
    [5] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Jiang Juan-Na, Chen Xin. Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials. Acta Physica Sinica, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [6] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Chen Xin. Sound insulation performance of Helmholtz cavity with thin film bottom. Acta Physica Sinica, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [7] Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang. Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions. Acta Physica Sinica, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [8] Jin Guo-Liang, Yin Jian-Fei, Wen Ji-Hong, Wen Xi-Sen. Investigation of underwater sound scattering on a cylindrical shell coated with anechoic coatings by the finite element method based on an equivalent parameter inversion. Acta Physica Sinica, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [9] Cao Song-Hua, Wu Jiu-Hui, Wang Yu, Hou Ming-Ming, Li Jing. Studies on the mechanism of acoustic pulse train and full transmission. Acta Physica Sinica, 2016, 65(6): 064302. doi: 10.7498/aps.65.064302
    [10] Zhang Zheng-Bing, Ma Xiao-Bai, Jin Zuan-Ming, Ma Guo-Hong, Yang Jin-Bo. Photoinduced coherent acoustic-phonons in Fe/Si film. Acta Physica Sinica, 2012, 61(9): 097401. doi: 10.7498/aps.61.097401
    [11] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [12] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [13] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [14] Lu Yi-Gang, Peng Jian-Xin. Study of acoustical properties of supercritical carbon dioxide using liquid acoustical theory. Acta Physica Sinica, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [15] Yao Ling-Jiang, Wang Ling-Ling. Characteristics of acoustic phonon transport and thermal conductance in quasi-one-dimensional quantum waveguides with semi-circular-arc cavity. Acta Physica Sinica, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [16] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [17] LIU XIAO-HAN, HUANG DA-MING, WANG XING-JUN, ZHANG CHUN-HONG, ZHU HAI-JUN, JIANG ZUI-MIN, WANG XUN. RAMAN SPECTRA FROM ACOUSTIC PHONONS IN NEARLY PERIODIC SiGe/Si SUPERLATTICES. Acta Physica Sinica, 1997, 46(9): 1863-1872. doi: 10.7498/aps.46.1863
    [18] XU JUN, CHEN KUN-JI, HAN HE-XIANG, LI GUO-HUA, WANG ZHAO-PING. ZONE-FOLDED LA PHONONS IN AMORPHOUS SEMICONDUCTOR SUPERLATTICES. Acta Physica Sinica, 1992, 41(12): 1938-1942. doi: 10.7498/aps.41.1938
    [19] LEI XIAO-LIN, TING CHIN-SEN. EFFECT OF COMBINED ACOUSTIC AND OPTICAL PHONON SCATTERING IN NONLINEAR ELECTRONIC TRANSPORT. Acta Physica Sinica, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [20] FENG RUO, GONG XIU-FEN, ZHU ZHENG-YA, SHI TAO. STUDY OF ACOUSTICAL NONLINEARITY B/A IN BIOLOGICAL MEDIUM. Acta Physica Sinica, 1984, 33(9): 1282-1286. doi: 10.7498/aps.33.1282
Metrics
  • Abstract views:  7580
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2020
  • Accepted Date:  16 July 2020
  • Available Online:  25 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回