Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method of reconstructing region of interest for differential phase contrast computed tomography imaging

Zhang Jing-Na Zhang Hui-Tao Xu Wen-Feng Zhu Yi-Ning Deng Shi-Wo Zhu Pei-Ping

Citation:

Method of reconstructing region of interest for differential phase contrast computed tomography imaging

Zhang Jing-Na, Zhang Hui-Tao, Xu Wen-Feng, Zhu Yi-Ning, Deng Shi-Wo, Zhu Pei-Ping
PDF
HTML
Get Citation
  • X-ray differential phase contrast computed tomography imaging based on grating interferometer system can reconstruct not only the linear attenuation coefficient, but also the phase shift coefficient and the linear scattering coefficient of the object. In practical application, it is very difficult to make a large area grating, so the sample is often larger than the grating. When the sample is scanned with a grating smaller than the sample, the part of the sample beyond the field of view of the grating will cause the differential phase projection information to be truncated. In this paper, a method of reconstructing the region of interest for differential phase contrast computed tomography is proposed. The method is based on the approximate linear relation between the phase shift coefficient of the object and the linear attenuation coefficient (i.e. the decrement in the real part of the refractive index and the imaginary part of the refractive index), the phase shift coefficient of the region of interest is approximately reconstructed by the polynomial of Lambda function of the phase shift coefficient and Lambda inverse function of linear attenuation coefficient. In this paper, according to the Fresnel diffraction theory and differential phase grating phase step-by-step method of imaging a simulation experiment is performed. In the experiment, conducted is the approximate reconstruction by using the first order polynomial and quadratic polynomial of Lambda function of the phase shift coefficient and Lambda inverse function of linear attenuation coefficient. The sample size is five times of grating imaging field, and the results show that this method can approximately reconstruct the region of interest for the sample image. We also carry out the actual data experiment. The actual data are obtained by the Talbot grating interferometer system of Shanghai synchrotron radiation BL13W1 station, and the standard model and biological sample are imaged. The method of reconstructing the region of interest is proposed in this paper. This method can be applied to the multi-material samples with a similar relationship between the decrement in the real part of the refractive index and the decrement in the imaginary part of the refractive index, and also to single-material samples. The comparison between the numerical simulations and the actual experimental results verifies the effectiveness of the proposed method.
      Corresponding author: Zhang Hui-Tao, zhanght@cnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671311, 61827809), the National Key Research and Development Program of China (Grant No. 2020YFA0712200), and the National Defense Technology Foundation Project (Grant No. JSZL2018208C003)
    [1]

    Momose A, Takeda T, Itai Y 1995 Rev. Sci. Instrum. 66 1434Google Scholar

    [2]

    Momose A, Takeda T, Itai Y Hirano K 1996 Nat. Med. 2 473Google Scholar

    [3]

    David C, Nohammer B, Solak H H, Ziegler, E 2002 Appl. Phys. Lett. 81 3287Google Scholar

    [4]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar

    [5]

    陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉 2008 物理学报 57 1576Google Scholar

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008 Acta Phys. Sin. 57 1576Google Scholar

    [6]

    Zou Y, Pan X, Sidky E Y 2005 Phys. Med. Biol 50 13Google Scholar

    [7]

    张慧滔, 陈明, 张朋 2007 自然科学进展 17 1589Google Scholar

    Zhang H T, Chen M, Zhang P 2007 Prog. Nat. Sci. 17 1589Google Scholar

    [8]

    Smith K T, Keinert F 1985 Appl. Optics 24 3950Google Scholar

    [9]

    Faridani A, Ritman E L, Smith K T 1992 SIAM J. Appl. Math. 52 459Google Scholar

    [10]

    Faridani A, Finch D V, Ritman E L, Smith K T 1997 SIAM J. Appl. Math. 57 1095Google Scholar

    [11]

    Anastasio M A, Pan X 2007 Opt. Lett. 32 3167Google Scholar

    [12]

    Cong W, Yang J, Wang G 2011 Phys. Med. Biol. 57 2905Google Scholar

    [13]

    Pascal Thériault Lauzier, Qi Z, Zambelli J, Bevins N, Chen G H 2012 Phys. Med. Biol. 57 117Google Scholar

    [14]

    Yang Q, Cong W, Wang G Developments in X-Ray Tomography X San Diego, California, United States, August 28–September 1, 2016 p996709-1

    [15]

    Felsner L, Berger M, Kaeppler S, Bopp J, Riess C 2018 Medical Image Computing and Computer Assisted Intervention–MICCAI 2018 (Springer: Cham) pp137−144

    [16]

    Felsner L, Kaeppler S, Maier A, Riess C 2020 IEEE T Comput. Imag. 6 625Google Scholar

    [17]

    Hsieh J 2009. Computed Tomography Principles, Design, Artifacts, and Recent Advances (2nd Ed.) (Washington: Wiley) pp55−114

    [18]

    Pan X, Xia D, Zou Y, Yu L 2004 Phys. Med. Biol. 49 4349Google Scholar

    [19]

    Gordon R, Bender R, Herman G T 1970 J. Theor. Biol. 29 471Google Scholar

    [20]

    Pfeiffer F, David C, Bunk O, Donath T, Bech M, Duc G L, Bravin A, Cloetens P 2008 Phys. Rev. Lett. 101 168101Google Scholar

    [21]

    Wu X, Liu H, Yan A 2005 Opt. Lett. 30 379Google Scholar

    [22]

    Chen R C, Dreossi D, Mancini L, Menk R, Rigon L, Xiao T Q, Longo R 2012 J. Synchrotron. Radiat. 19 836Google Scholar

    [23]

    Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011 Appl. Phys. Lett. 98 23Google Scholar

    [24]

    Rong F, Liang Y, Yang Y D, Ma X H 2017 Infrared Laser Eng. 46 1220002Google Scholar

    [25]

    Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C 2012 PNAS 109 10199Google Scholar

    [26]

    王圣浩 2015 博士学位论文 (合肥: 中国科学技术大学)

    Wang S H 2015 Ph. D. Dissertation ((Hefei: University of Science and Technology of China) (in Chinese)

  • 图 1  模拟实验成像示意图

    Figure 1.  Imaging schematic diagram of simulation experiment.

    图 2  (a) 感兴趣区域吸收投影的正弦图; (b) 感兴趣区域微分相位投影的正弦图

    Figure 2.  (a) Sinogram of absorption projection for the ROI; (b) sinogram of differential phase projection for the ROI.

    图 3  相移系数重建结果 (a) 采用一次多项式近似的重建图像; (b)采用二次多项式近似的重建图像; (c) 图3(a)图3(b)在绿色虚线位置处的剖线图

    Figure 3.  Reconstruction results of phase shift coefficient: (a) The reconstruction image using a first order polynomial approximation; (b) the reconstruction image using a second order polynomial approximation; (c) Fig.3 (a) and Fig.3 (b) in the green dotted line location profile chart.

    图 4  相移系数重建结果 (a)实验模体; (b)全局数据重建图像, 红色虚线内为感兴趣区域图像; (c)截断数据采用一次多项式近似的重建图像; (d)截断数据采用二次多项式近似的重建图像; (e) 图4(c)图4(d)在绿色虚线位置处的剖线图

    Figure 4.  Reconstruction results of phase shift coefficient: (a) Experimental modle; (b) the reconstruction image of global data, the ROI image is in the red dotted line; (c) the reconstruction image of the truncated data using a first order polynomial approximation; (d) the reconstruction image of the truncated data using a second order polynomial approximation; (e) Fig.4 (c) and Fig.4 (d) in the green dotted line location profile chart.

    图 5  (a) 全局吸收投影的正弦图; (b)全局微分相位投影的正弦图. 两红色虚线间为截断的感兴趣区域正弦图

    Figure 5.  (a) Sinogram of global absorption projection; (b) sinogram of the global differential phase projection. Between the two red dotted line for ROI of truncation sinogram.

    图 6  相移系数重建图像 (a) 全局数据重建图像, 红色虚线内为感兴趣区域图像; (b) 全局数据的感兴趣区域重建图像; (c) 截断数据采用一次多项式近似的重建图像

    Figure 6.  Reconstruction image of phase shift coefficient: (a) The reconstruction image of global data, the ROI image is in the red dotted line; (b) the reconstruction image of the ROI from the global data; (c) the reconstruction image of the truncated data using a first order polynomial approximation.

    表 1  一次多项式和二次多项式重建结果的MSE和PSNR

    Table 1.  MSE and PSNR of reconstruction results of the first order polynomial and the second order polynomial.

    方法MSEPSNR
    一次多项式0.079610.9894
    二次多项式0.027115.6647
    DownLoad: CSV

    表 2  水、PTFE、PMMA、LDPE的折射率实部减小量$\delta $

    Table 2.  The decrement of the real part of the refractive index of water, PTFE, PMMA, and LDPE.

    材料水(H2O)PTFE
    (C2F4)
    PMMA
    (C5O2H8)
    LDPE
    (C2H4)
    $\delta $/10–75.269.656.305.46
    DownLoad: CSV
  • [1]

    Momose A, Takeda T, Itai Y 1995 Rev. Sci. Instrum. 66 1434Google Scholar

    [2]

    Momose A, Takeda T, Itai Y Hirano K 1996 Nat. Med. 2 473Google Scholar

    [3]

    David C, Nohammer B, Solak H H, Ziegler, E 2002 Appl. Phys. Lett. 81 3287Google Scholar

    [4]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar

    [5]

    陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉 2008 物理学报 57 1576Google Scholar

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008 Acta Phys. Sin. 57 1576Google Scholar

    [6]

    Zou Y, Pan X, Sidky E Y 2005 Phys. Med. Biol 50 13Google Scholar

    [7]

    张慧滔, 陈明, 张朋 2007 自然科学进展 17 1589Google Scholar

    Zhang H T, Chen M, Zhang P 2007 Prog. Nat. Sci. 17 1589Google Scholar

    [8]

    Smith K T, Keinert F 1985 Appl. Optics 24 3950Google Scholar

    [9]

    Faridani A, Ritman E L, Smith K T 1992 SIAM J. Appl. Math. 52 459Google Scholar

    [10]

    Faridani A, Finch D V, Ritman E L, Smith K T 1997 SIAM J. Appl. Math. 57 1095Google Scholar

    [11]

    Anastasio M A, Pan X 2007 Opt. Lett. 32 3167Google Scholar

    [12]

    Cong W, Yang J, Wang G 2011 Phys. Med. Biol. 57 2905Google Scholar

    [13]

    Pascal Thériault Lauzier, Qi Z, Zambelli J, Bevins N, Chen G H 2012 Phys. Med. Biol. 57 117Google Scholar

    [14]

    Yang Q, Cong W, Wang G Developments in X-Ray Tomography X San Diego, California, United States, August 28–September 1, 2016 p996709-1

    [15]

    Felsner L, Berger M, Kaeppler S, Bopp J, Riess C 2018 Medical Image Computing and Computer Assisted Intervention–MICCAI 2018 (Springer: Cham) pp137−144

    [16]

    Felsner L, Kaeppler S, Maier A, Riess C 2020 IEEE T Comput. Imag. 6 625Google Scholar

    [17]

    Hsieh J 2009. Computed Tomography Principles, Design, Artifacts, and Recent Advances (2nd Ed.) (Washington: Wiley) pp55−114

    [18]

    Pan X, Xia D, Zou Y, Yu L 2004 Phys. Med. Biol. 49 4349Google Scholar

    [19]

    Gordon R, Bender R, Herman G T 1970 J. Theor. Biol. 29 471Google Scholar

    [20]

    Pfeiffer F, David C, Bunk O, Donath T, Bech M, Duc G L, Bravin A, Cloetens P 2008 Phys. Rev. Lett. 101 168101Google Scholar

    [21]

    Wu X, Liu H, Yan A 2005 Opt. Lett. 30 379Google Scholar

    [22]

    Chen R C, Dreossi D, Mancini L, Menk R, Rigon L, Xiao T Q, Longo R 2012 J. Synchrotron. Radiat. 19 836Google Scholar

    [23]

    Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011 Appl. Phys. Lett. 98 23Google Scholar

    [24]

    Rong F, Liang Y, Yang Y D, Ma X H 2017 Infrared Laser Eng. 46 1220002Google Scholar

    [25]

    Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C 2012 PNAS 109 10199Google Scholar

    [26]

    王圣浩 2015 博士学位论文 (合肥: 中国科学技术大学)

    Wang S H 2015 Ph. D. Dissertation ((Hefei: University of Science and Technology of China) (in Chinese)

  • [1] Qian Huang-He, Wang Di, Han Tao, Ding Zhi-Hua. A method of fast locating discrete interface based on phase information of complex master-slave optical coherence tomography. Acta Physica Sinica, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [2] Yao Chun-Xia, He Qi-Li, Zhang Jin, Fu Tian-Yu, Wu Zhao, Wang Shan-Feng, Huang Wan-Xia, Yuan Qing-Xi, Liu Peng, Wang Yan, Zhang Kai. Method of single exposure phase contrast imaging without analyser grating. Acta Physica Sinica, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [3] Niu Jing-Jing, Liu Xiong-Bo, Chen Peng-Fa, Yu Bin, Yan Wei, Qu Jun-Le, Lin Dan-Ying. Fast fluorescence lifetime microscopy imaging of any number of discrete irregular regions of interest. Acta Physica Sinica, 2021, 70(19): 198701. doi: 10.7498/aps.70.20210941
    [4] Xi Xiao-Qi, Han Yu, Li Lei, Yan Bin. Tilting fan beam back-projection filtration algorithm for local reconstruction in helical cone-beam computed tomography. Acta Physica Sinica, 2019, 68(8): 088701. doi: 10.7498/aps.68.20190055
    [5] Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben. Quantitative analysis of the field of view for X-ray differential phase contrast imaging. Acta Physica Sinica, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [6] Shangguan Zi-Wei, Shen Yi, Li Peng, Ding Zhi-Hua. Wavenumber calibration and phase measurement in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [7] Pan Cong, Guo Li, Shen Yi, Yan Xue-Guo, Ding Zhi-Hua, Li Peng. Phase correction method based on interfacial signal in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [8] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [9] Wang Lin-Yuan, Liu Hong-Kui, Li Lei, Yan Bin, Zhang Han-Ming, Cai Ai-Long, Chen Jian-Lin, Hu Guo-En. Review of sparse optimization-based computed tomography image reconstruction from few-view projections. Acta Physica Sinica, 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [10] Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Theoretical and experimental study of two-phase-stepping approach for hard X-ray differential phase contrast imaging. Acta Physica Sinica, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [11] Liu Hui-Qiang, Ren Yu-Qi, Zhou Guang-Zhao, He You, Xue Yan-Ling, Xiao Ti-Qiao. Investigation on the application of phase-attenuation duality to X-ray mixed contrast quantitative micro-tomography. Acta Physica Sinica, 2012, 61(7): 078701. doi: 10.7498/aps.61.078701
    [12] Huang Liang-Min, Ding Zhi-Hua, Hong Wei, Wang Chuan. Correlated Doppler optical coherence tomography. Acta Physica Sinica, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [13] Yang Qiang, Liu Xin, Guo Jin-Chuan, Lei Yao-Hu, Huang Jian-Heng, Niu Han-Ben. Experimental study of X-ray phase contrast imaging without absorbing grating. Acta Physica Sinica, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [14] Zhang Kai, Zhu Pei-Ping, Huang Wan-Xia, Yuan Qing-Xi, Liu Li, Yuan Bin, Wang Jun-Yue, Shu Hang, Chen Bo, Liu Yi-Jin, Li En-Rong, Liu Xiao-Song, Wu Zi-Yu. The application of algebraic reconstruction techniques in X-ray refraction contrast CT. Acta Physica Sinica, 2008, 57(6): 3410-3418. doi: 10.7498/aps.57.3410
    [15] Chen Zhan-Xu, Tang Zhi-Lie, Wan Wei, He Yong-Heng. Photoacoustic tomography imaging based on an acoustic lens imaging system. Acta Physica Sinica, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [16] Shu Hang, Zhu Pei-Ping, Wang Jun-Yue, Gao Xin, Yin Hong-Xia, Liu Bo, Yuan Qing-Xi, Huang Wan-Xia, Luo Shu-Qian, Gao Xiu-Lai, Wu Zi-Yu, Fang Shou-Xian. Diffraction enhanced imaging computer tomography. Acta Physica Sinica, 2006, 55(3): 1099-1106. doi: 10.7498/aps.55.1099
    [17] Wang Min, Hu Xiao-Fang, Wu Xiao-Ping. Analysis of contrast error mechanism for synchrotron radiation computed-tomography technique. Acta Physica Sinica, 2006, 55(8): 4065-4069. doi: 10.7498/aps.55.4065
    [18] Chen Jian-Wen, Gao Hong-Yi, Zhu Hua-Feng, Xie Hong-Lan, Li Ru-Xin, Xu Zhi-Zhan. Neutron phase contrast tomographic imaging method. Acta Physica Sinica, 2005, 54(3): 1132-1135. doi: 10.7498/aps.54.1132
    [19] Wang Shao-Hong, B.Ferguson, Zhang Cun-Lin, Zhang Xi-Cheng. Terahertz computer tomography. Acta Physica Sinica, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
    [20] LUO JIAN, TAO KUN. COMPUTER DEPTH PROFILING ANALYSIS METHOD FOR X-RAY DIFFRACTION POLYCRYSTALLINE PATTERNS. Acta Physica Sinica, 1995, 44(11): 1793-1797. doi: 10.7498/aps.44.1793
Metrics
  • Abstract views:  4911
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2020
  • Accepted Date:  31 January 2021
  • Available Online:  28 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回