Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Common path continuous terahertz reflection and attenuated total reflection imaging

Wu Li-Min Xu De-Gang Wang Yu-Ye Ge Mei-Lan Li Hai-Bin Wang Ze-Long Yao Jian-Quan

Citation:

Common path continuous terahertz reflection and attenuated total reflection imaging

Wu Li-Min, Xu De-Gang, Wang Yu-Ye, Ge Mei-Lan, Li Hai-Bin, Wang Ze-Long, Yao Jian-Quan
PDF
HTML
Get Citation
  • Terahertz imaging technology is one of the candidate technologies for medical imaging. In particular, continuous terahertz reflection and attenuated total reflection imaging are expected to achieve rapid intraoperative imaging, which is hot research topic at present. In order to realize the rapid multi-dimensional and high-quality terahertz imaging detection of sample, it is necessary to study the common optical path continuous terahertz reflection/attenuated total reflection dual-mode imaging system based on point scanning. By using the Fresnel formula and the penetration depth formula of evanescent wave, the influence of imaging angle on the reflected signal and the penetration depth of attenuated total reflection are studied theoretically in this paper. The imaging angle of terahertz wave suitable for both reflection and attenuation total reflection imaging is obtained. Based on this, an isoscele total reflection prism with a base angle of 49° is designed. The dual-mode imaging of common optical path continuous terahertz reflection and attenuated total reflection is realized by quickly switching between reflection window and total reflection prism. The reflection and attenuation total reflection imaging modes have imaging resolutions of 400 μm and 500 μm, respectively. Continuous terahertz reflection and attenuated total reflection imaging are experimentally studied by using distilled water and pork as samples. The results show that the relative reflectance of the sample obtained in the attenuated total reflection imaging mode fluctuates within a range of 1%, and the image contrast is 9 times that of the reflection imaging mode. Moreover, attenuated total reflection imaging can effectively identify the sample with the length less than 1 mm. Thus, compared with reflection imaging, continuous terahertz attenuated total reflection imaging has the advantages of high image resolution, high image contrast and highr signal stability, and can accurately obtain the reflectivity of sample. The terahertz attenuated total reflection imaging technology is more helpful in achieving high sensitivity imaging of samples. By combining reflection and attenuated total reflection imaging modes, the advantages of different imaging modes can be compensated for and the performance of the imaging system can be further improved. This common path continuous terahertz reflection and attenuated total reflection dual mode imaging system is expected to achieve a high sensitivity detection of sample.
      Corresponding author: Wang Yu-Ye, yuyewang@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775160, 61771332, 62011540006, U1837202)
    [1]

    Son J H 2009 J. Appl. Phys. 105 10Google Scholar

    [2]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 16Google Scholar

    [3]

    Bowman T, Shenawee M, Campbell L K 2016 Biomed. Opt. Express 7 9Google Scholar

    [4]

    Ji Y B, Park C H, Kim H, Kim S H, Lee G M, Noh S K, Jeon T I, Son J H, Huh Y M, Haam S, Oh S J, Lee S K, Suh J S 2015 Biomed. Opt. Express 6 4Google Scholar

    [5]

    Ishikawa Y, Minamide H, Ikari T, Miura Y, Ito H 2005 Proceedings of the International Quantum Electronics Conference San Jose, USA, July 11−11, 2005, p1236

    [6]

    Nishizawa J, Sasaki T, Suto K, Yamada T, Tanabe T, Tanno T, Sawai T, Miura Y 2005 Opt. Commun. 244 1Google Scholar

    [7]

    杨昆, 赵国忠, 梁承森, 武利忠 2009 中国激光 25 29Google Scholar

    Yang K, Zhao G, Liang C S, Wu L Z 2009 J. Lasers 25 29Google Scholar

    [8]

    Wahaia F, Kasalynas I, Venckevicius R, Seliuta D, Granja P L 2016 J. mol. Struct. 5 1107Google Scholar

    [9]

    Hartwick T S, Hodges D T, Barker D H, Foote F B 1976 Appl. Optics 15 8Google Scholar

    [10]

    Park J Y, Choi H J, Cho K S, Kim K R, Son J H 2011 J. Appl. Phys. 109 6Google Scholar

    [11]

    Liu H, Wang Y, Xu D, Wu L, Yan C, Yan D, Tang L, He Y, Feng H, Yao J 2017 J. Phys. D Appl. Phys. 50 37Google Scholar

    [12]

    Gerasimov V V, Knyazev B A and Cherkassky V S 2010 Opt. Spectrosc. 108 6Google Scholar

    [13]

    Bowman T, Walter A, EI-Shenawee M 2016 Proceedings Volume 9700, Design and Quality for Biomedical Technologies IX San Francisco, California, United States, February 13−14, 2016 p97000J-1–5

    [14]

    Wallace V P, Fitzgerald A J, Shankar S, Flanagan N, Arnone D D 2015 Brit J. of Dermatol. 151 2Google Scholar

    [15]

    Sim Y C, Park J Y, Ahn K M, Park C, Son J H 2013 Biomed. Opt. Express 4 8Google Scholar

    [16]

    Wang Y, Chen L, Chen T, Jia S, Ren Y, Li C, Chao Z, Liu H, Wu L 2018 J. Phys. D Appl. Phys. 51 32Google Scholar

    [17]

    Chan K L A and Kazarian S G 2003 Appl. Spectrosc. 57 4Google Scholar

    [18]

    Wojdyla A, Gallot G 2013 Opt. Lett. 38 2Google Scholar

    [19]

    Catherine Z 2003 Nature 14 721

    [20]

    Lee A W, Hu Q 2005 Opt. Lett. 30 19Google Scholar

    [21]

    Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R, Padilla W J 2014 Nat. Photonics 8 8Google Scholar

    [22]

    Doradla P, Alavi K, Joseph C S, Giles R 2013 J. Biomed. Opt. 18 9Google Scholar

    [23]

    Chernomyrdin N V, Kucheryavenko A S, Kolontaeva G S, G M Katyba, I N Dolganova, P A Karalkin, D S Ponomarev, V N Kurlov, I V Reshetov, Skorobogatiy M 2018 Appl. Phys. Lett. 113 11Google Scholar

    [24]

    Wu L, Xu D, Wang Y, Zhang Y, Wang H, Liao B, Gong S, Chen T, Wu N, Feng H, Yao J 2020 Neurophotonics 7 2Google Scholar

    [25]

    Johnk C T 1988 Engineering Electromagnetic Fields and Waves (2nd Ed.) (Hoboken, NJ, USA: Wiley) pp247−251

    [26]

    Wang Y, Wang Y, Xu D, Wu L, Wang G, Jiang B, Yu T, Chang C, Chen T, Yao J 2020 Opt. Express 28 15Google Scholar

    [27]

    Shikata J, Handal H, Nawaharal A, Minamide H, Ito H 2007 Conference on Lasers and Electro Optics Pacific Rim, Seoul, South Korea, August 26–31, 2007 p1406

    [28]

    Liu H, Wang Y, Xu D, Jiang Z, Wu L, Yan C, Tang L, He Y, Yan D, Ding X, Feng H, Yao J 2018 Opt. Express 26 16Google Scholar

  • 图 1  太赫兹波在成像窗口中传输示意图(此处以反射为例)

    Figure 1.  Schematic diagram of terahertz wave propagation in the imaging window (take reflection as an example).

    图 2  (a) S和P偏振波在界面处的反射系数和透射系数与入射角θ1的关系; (b)太赫兹波经反射窗口前表面透射、后表面反射和前表面透射后的反射系数r与入射角θ1的关系

    Figure 2.  (a) The relation between the reflection coefficient and transmission coefficient of S and P polarized waves at the interface and the incident angle θ1; (b) the relation between the reflection coefficient r and incident angle θ1 of terahertz wave after the front surface transmission, back surface reflection and front surface transmission through reflection window.

    图 3  采用高阻硅全反射棱镜时, 倏逝波在不同样品中的穿透深度与入射角的关系

    Figure 3.  The relationship between the penetration depth and the incident angle of evanescent wave in different samples, when using the high resistance silicon total reflection prism.

    图 4  共光路连续太赫兹反射和衰减全反射成像系统示意图

    Figure 4.  Schematic diagram of common path continuous terahertz reflection and attenuation total reflection imaging system.

    图 5  采用石英和高阻硅材料为成像窗口时, 连续太赫兹反射和衰减全反射成像系统的分辨率

    Figure 5.  The resolution of continuous terahertz reflection and attenuated total reflection imaging systems, when the quartz and the high resistance silicon materials are used as imaging windows.

    图 6  反射和衰减全反射模式下, 基于理论和实验获得蒸馏水的反射率和相对反射率

    Figure 6.  The reflectivity and relative reflectivity of distilled water obtained theoretically and experimentally under the reflection and attenuation total reflection modes.

    图 7  水滴在不同成像模式下的 (a)—(c)可见光图和(d)—(f)太赫兹成像图, (g)—(i)分别为图7(d)(f)中白色虚线处对应的相对反射率图

    Figure 7.  (a)–(c) Visible image and (d)–(f) terahertz image of water droplets in different imaging modes, (g)–(i) the relative reflectivity map corresponding to the white dotted line in Fig.7(d)(f), respectively.

    图 8  (a) 猪肉组织与反射窗口紧密接触可见光图; (b), (c) 采用高阻硅和石英材料为反射窗口时的太赫兹成像图; (d) 未覆盖成像窗口时猪肉组织可见光图; (e), (f) 反射和衰减全反射模式下猪肉组织的太赫兹成像图

    Figure 8.  (a) Visible image of pork tissue in close contact with the reflection window; (b), (c) the terahertz images of pork tissue in reflective and attenuated total reflection modes using high resistance silicon and quartz materials as reflection windows, (d) visible image of pork tissue when the imaging window is not covered; (e), (f) the terahertz images of pork tissue in reflective and attenuated total reflection modes respectively.

  • [1]

    Son J H 2009 J. Appl. Phys. 105 10Google Scholar

    [2]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 16Google Scholar

    [3]

    Bowman T, Shenawee M, Campbell L K 2016 Biomed. Opt. Express 7 9Google Scholar

    [4]

    Ji Y B, Park C H, Kim H, Kim S H, Lee G M, Noh S K, Jeon T I, Son J H, Huh Y M, Haam S, Oh S J, Lee S K, Suh J S 2015 Biomed. Opt. Express 6 4Google Scholar

    [5]

    Ishikawa Y, Minamide H, Ikari T, Miura Y, Ito H 2005 Proceedings of the International Quantum Electronics Conference San Jose, USA, July 11−11, 2005, p1236

    [6]

    Nishizawa J, Sasaki T, Suto K, Yamada T, Tanabe T, Tanno T, Sawai T, Miura Y 2005 Opt. Commun. 244 1Google Scholar

    [7]

    杨昆, 赵国忠, 梁承森, 武利忠 2009 中国激光 25 29Google Scholar

    Yang K, Zhao G, Liang C S, Wu L Z 2009 J. Lasers 25 29Google Scholar

    [8]

    Wahaia F, Kasalynas I, Venckevicius R, Seliuta D, Granja P L 2016 J. mol. Struct. 5 1107Google Scholar

    [9]

    Hartwick T S, Hodges D T, Barker D H, Foote F B 1976 Appl. Optics 15 8Google Scholar

    [10]

    Park J Y, Choi H J, Cho K S, Kim K R, Son J H 2011 J. Appl. Phys. 109 6Google Scholar

    [11]

    Liu H, Wang Y, Xu D, Wu L, Yan C, Yan D, Tang L, He Y, Feng H, Yao J 2017 J. Phys. D Appl. Phys. 50 37Google Scholar

    [12]

    Gerasimov V V, Knyazev B A and Cherkassky V S 2010 Opt. Spectrosc. 108 6Google Scholar

    [13]

    Bowman T, Walter A, EI-Shenawee M 2016 Proceedings Volume 9700, Design and Quality for Biomedical Technologies IX San Francisco, California, United States, February 13−14, 2016 p97000J-1–5

    [14]

    Wallace V P, Fitzgerald A J, Shankar S, Flanagan N, Arnone D D 2015 Brit J. of Dermatol. 151 2Google Scholar

    [15]

    Sim Y C, Park J Y, Ahn K M, Park C, Son J H 2013 Biomed. Opt. Express 4 8Google Scholar

    [16]

    Wang Y, Chen L, Chen T, Jia S, Ren Y, Li C, Chao Z, Liu H, Wu L 2018 J. Phys. D Appl. Phys. 51 32Google Scholar

    [17]

    Chan K L A and Kazarian S G 2003 Appl. Spectrosc. 57 4Google Scholar

    [18]

    Wojdyla A, Gallot G 2013 Opt. Lett. 38 2Google Scholar

    [19]

    Catherine Z 2003 Nature 14 721

    [20]

    Lee A W, Hu Q 2005 Opt. Lett. 30 19Google Scholar

    [21]

    Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R, Padilla W J 2014 Nat. Photonics 8 8Google Scholar

    [22]

    Doradla P, Alavi K, Joseph C S, Giles R 2013 J. Biomed. Opt. 18 9Google Scholar

    [23]

    Chernomyrdin N V, Kucheryavenko A S, Kolontaeva G S, G M Katyba, I N Dolganova, P A Karalkin, D S Ponomarev, V N Kurlov, I V Reshetov, Skorobogatiy M 2018 Appl. Phys. Lett. 113 11Google Scholar

    [24]

    Wu L, Xu D, Wang Y, Zhang Y, Wang H, Liao B, Gong S, Chen T, Wu N, Feng H, Yao J 2020 Neurophotonics 7 2Google Scholar

    [25]

    Johnk C T 1988 Engineering Electromagnetic Fields and Waves (2nd Ed.) (Hoboken, NJ, USA: Wiley) pp247−251

    [26]

    Wang Y, Wang Y, Xu D, Wu L, Wang G, Jiang B, Yu T, Chang C, Chen T, Yao J 2020 Opt. Express 28 15Google Scholar

    [27]

    Shikata J, Handal H, Nawaharal A, Minamide H, Ito H 2007 Conference on Lasers and Electro Optics Pacific Rim, Seoul, South Korea, August 26–31, 2007 p1406

    [28]

    Liu H, Wang Y, Xu D, Jiang Z, Wu L, Yan C, Tang L, He Y, Yan D, Ding X, Feng H, Yao J 2018 Opt. Express 26 16Google Scholar

  • [1] Pei Bo-Yang, Zhuang Ge, Xie Jin-Lin, Zhou Yi-Nan. Absolute calibration method of electron cyclotron emission imaging system on EAST tokamak. Acta Physica Sinica, 2024, 73(13): 135202. doi: 10.7498/aps.73.20240497
    [2] Pan Xin-Yu, Bi Xiao-Xue, Dong Zheng, Geng Zhi, Xu Han, Zhang Yi, Dong Yu-Hui, Zhang Cheng-Long. Review of development for ptychography algorithm. Acta Physica Sinica, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [3] Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun. Polarization multiplexing scattering imaging. Acta Physica Sinica, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [4] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [5] Xu Wen-Hui, Ning Shou-Cong, Zhang Fu-Cai. Review of partially coherent diffraction imaging. Acta Physica Sinica, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [6] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [7] Wang Da-Yong, Li Bing, Rong Lu, Zhao Jie, Wang Yun-Xin, Zhai Chang-Chao. Continuous-wave terahertz quantitative dual-plane ptychography. Acta Physica Sinica, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [8] Wang Dian-Wei1\2, Han Peng-Fei, Fan Jiu-Lun, Liu Ying1\2, Xu Zhi-Jie, Wang Jing. Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation. Acta Physica Sinica, 2018, 67(21): 210701. doi: 10.7498/aps.67.20181288
    [9] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [10] Lu Wen-Liang, Lou Shu-Qin, Wang Xin, Shen Yan, Sheng Xin-Zhi. False-color terahertz imaging system based on terahertz time domain spectrocsopy. Acta Physica Sinica, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [11] Zhang Mei, Zhang Xian-Peng, Li Kui-Nian, Sheng Liang, Yuan Yuan, Song Chao-Hui, Li Yang. Angular resolution of a neutron scatter imaging system. Acta Physica Sinica, 2015, 64(4): 042801. doi: 10.7498/aps.64.042801
    [12] Chen He, Yu Bin, Chen Dan-Ni, Li Heng, Niu Han-Ben. Super-diffraction imaging in three-dimensional localization precision of the double-helix point spread function. Acta Physica Sinica, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [13] Liu Hai-Gang, Xu Zi-Jian, Zhang Xiang-Zhi, Guo Zhi, Tai Ren-Zhong. Influence of central beamstop on ptychographic coherent diffractive imaging. Acta Physica Sinica, 2013, 62(15): 150702. doi: 10.7498/aps.62.150702
    [14] Zhao Ji-Zhen, Ouyang Xiao-Ping, Sheng Liang, Wei Fu-Li, Zhang Mei. Absolute measurement of pulsed radiation imaging. Acta Physica Sinica, 2013, 62(22): 225203. doi: 10.7498/aps.62.225203
    [15] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [16] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [17] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [18] Zhou Guang-Zhao, Tong Ya-Jun, Chen Can, Ren Yu-Qi, Wang Yu-Dan, Xiao Ti-Qiao. Digital simulation for coherent X-ray diffractive imaging. Acta Physica Sinica, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [19] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [20] Kong Ling-Kai, Zheng Zhi-Qiang, Feng Zhuo-Hong, Li Xiao-Yan, Jiang Cui-Hua, Ming Hai. Focusing property of two-dimensional photonic crystals with ring-shaped air holes. Acta Physica Sinica, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
Metrics
  • Abstract views:  5678
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2021
  • Accepted Date:  24 February 2021
  • Available Online:  31 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回