Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microscopic theory for elastic modulus of colloidal polymers: Effect of bond length

Zhang Bo-Kai

Citation:

Microscopic theory for elastic modulus of colloidal polymers: Effect of bond length

Zhang Bo-Kai
PDF
HTML
Get Citation
  • Colloidal polymers have attracted increasing attention in condensed physics, statistical mechanics and polymer science and engineering due to their advances in synthesis and visualization. Many useful properties and applications of colloidal polymers make them an ideal model to explore fundamental problems in slow dynamics and rheology of chain-like molecules in supercooled regime. With temperature decreasing or density rapidly increasing, amorphous materials often exhibit nonzero shear moduli. In this article, we are to investigate the nonzero shear modulus and bulk modulus of colloidal polymer in supercooled regime based on recent microscopic theoretical development. At the segmental-scale level, an analytical derivation for elastic modulus of colloidal polymer is constructed based on the standard approximation in naïve mode-coupling theory (NMCT). In the framework of nonlinear Langevin equation theory (NLET), the derivation combines the concept of dynamic free energy, localization and NMCT crossover volume fraction. Taking the chain connectivity into account, an explicit expression for shear modulus including intrachain structure factor, interchain correlation and localized length is formulated. Bulk modulus can be obtained by relating it to long wavelength part of static structure factor. Firstly, our calculation for discrete wormlike chain shows that intrachain structure factor has a power law decay at intermediate wavevector which is similar to flexible linear chain. Secondly, we find that colloidal polymer with long bond length has a lower NMCT crossover volume fraction. Furthermore, inputting the localized length, long wavelength density fluctuation and static intrachain and interchain structures into the theoretical expression, the effect of bond length on shear modulus and bulk modulus are investigated. Interestingly, we find the bond length plays a critical and unique role in localized length and bulk modulus. For instance, when the supercooling degree is used as an independent variable, the local length and bulk elastic modulus of the chain with the same bond length can be collapsed onto a universal curve, which is independent of chain length and local bending energy. However, in the aspect of shear modulus, the bond length is not a unique quantity and the above universal curve cannot be found. The shear modulus depends on other parameters of chain, such as chain length and rigidity. According to the universal behavior of zero-wavevector static structure factor versus bond length, we guess that the nonuniversal curve of shear modulus is due to the bond length effect on long wavevector static structure factor. This work provides a theoretical foundation for controlling various properties of chain-like supercooled materials in the future.
      Corresponding author: Zhang Bo-Kai, bkzhang@zstu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904320, 11847115) and the Scientific Research Staring Foundation of Zhejiang Sci-Tech University (Grant No. 18062243-Y)
    [1]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar

    [2]

    Langer J S 2014 Rep. Prog. Phys. 77 042501Google Scholar

    [3]

    Stillinger F H, Debenedetti P G 2013 Annu. Rev. Condens. Matter Phys. 4 263Google Scholar

    [4]

    Biroli G, Urbani P 2016 Nat. Phys. 12 1130Google Scholar

    [5]

    Hill L J, Pinna N, Char K, Pyun J 2015 Prog. Polym. Sci. 40 85Google Scholar

    [6]

    Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, Han Y, Chen H 2010 Phys. Chem. Chem. Phys. 12 11850Google Scholar

    [7]

    Zhao Y, Xu L, Liz-Marzán L M, Kuang H, Ma W, Asenjo-Garcıa A, García de Abajo F J, Kotov N A, Wang L, Xu C 2013 J. Phys. Chem. Lett. 4 641Google Scholar

    [8]

    Hunter G L, Weeks E R 2012 Rep. Prog. Phys. 75 066501Google Scholar

    [9]

    Gotze W 2008 Complex Dynamics of Glass-forming liquids: A Mode-coupling Theory (New York: Oxford University Press) pp177−209

    [10]

    Zwanzig R 2001 Nonequilibrium Statistical Mechanics (New York: Oxford University Press) pp163−165

    [11]

    Schweizer K S, Saltzman E J 2003 J. Chem. Phys. 119 1181Google Scholar

    [12]

    Schweizer K S, Saltzman E J 2004 J. Chem. Phys. 121 1984Google Scholar

    [13]

    Chen K, Saltzman E J, Schweizer K S 2010 Annu. Rev. Condens. Matter Phys. 1 277Google Scholar

    [14]

    Kobelev V, Schweizer K S 2005 Phys. Rev. E 71 021401Google Scholar

    [15]

    Chen K, Schweizer K S 2009 Phys. Rev. Lett. 102 038301Google Scholar

    [16]

    Schweizer K S, Curro J G 1997 Adv. Chem. Phys. 98 1Google Scholar

    [17]

    Chen K, Schweizer K S 2007 J. Chem. Phys. 126 014904Google Scholar

    [18]

    Chen K, Saltzman E J, Schweizer K S 2009 J. Phys. Condens. Matter 21 503101Google Scholar

    [19]

    Martin T B, Gartner T E, Jones R L, Snylder C R, Jayaraman A 2018 Macromolecules 51 2906Google Scholar

    [20]

    Kulshreshtha A, Jayaraman A 2020 Macromolecules 53 4 014904Google Scholar

    [21]

    Dell Z E, Schweizer K S 2018 Soft Matter 14 9132Google Scholar

    [22]

    Gartner T E, Haque F M, Gomi A M, Grayson S M, Hore M J, Jayaraman A 2019 Macromolecules 52 4579Google Scholar

    [23]

    Zhou Y, Schweizer K S 2020 Macromolecules 53 22Google Scholar

    [24]

    Hooper J, Schweizer K S 2006 Macromolecules 39 5133Google Scholar

    [25]

    Zhou Y, Schweizer K S 2020 J. Chem. Phys. 153 114901Google Scholar

    [26]

    Schweizer K S 2005 J. Chem. Phys. 123 244501Google Scholar

    [27]

    Cheng S, Xie S, Carrillo J Y, Carroll B, Martin H, Cao P, Dadmun M D, Sumpter B G, Novikov V N, Schweizer K S, Sokolov A P 2017 ACS Nano 11 1Google Scholar

    [28]

    Zhang B K, Li H, Li J, Chen K, Tian W D, Ma Y Q 2016 Soft Matter 12 8104Google Scholar

    [29]

    Honnell K, Curro J G, Schweizer K S 1990 Macromolecules 23 3496Google Scholar

    [30]

    Hansen J P, McDonald I R 2013 Theory of Simple Liquids (Elsevier: Academic Press) pp105−145

    [31]

    Zhang B K, Li J, Chen K, Tian W D, Ma Y Q 2016 Chin. Phys. B 25 116101Google Scholar

    [32]

    Li J, Zhang B K 2020 Europhys. Lett. 130 56001Google Scholar

  • 图 1  胶体聚合物模型的示意图, 包含了模型中3个连续单体(蓝球)和关键的尺度(半径和键长)与键角

    Figure 1.  Schematic of colloidal polymers. Blue spheres represent three consecutive monomers with diameter $ \sigma $, bond angle $ \theta $ and bond length $ l $.

    图 2  静态结构 (a) 在不同键长下的单链结构因子, 虚点线显示在中级波矢范围满足幂律衰减$\sim {{k}}^{-2}$; (b) 不同键长下的径向分布函数

    Figure 2.  Static Structure functions: (a) Intrachain structure factor for different bond lengths (dashed-dotted line shows a power law decay $\sim\!{{k}}^{-2}$ at intermediate wavevector); (b) the radial distribution functions for different bond lengths.

    图 3  不同链内弯曲能下, 玻璃化转变体积分数随着链长的变化

    Figure 3.  Crossover volume fraction as a function of bond length for different bending energies.

    图 4  (a) 不同链内弯曲能和键长的局域尺寸随着玻璃化深度的变化, 绿线是硬球液体的局域尺寸; (b) 不同链内弯曲能和键长的剪切弹性模量随着玻璃化深度$ \phi -{\phi }_{\mathrm{c}} $的变化, 绿线是硬球的数据

    Figure 4.  (a) Localization length as a function of $ \phi -{\phi }_{\mathrm{c}} $ for different bending energies and bond lengths. Green line represents localization length for hard sphere liquids. (b) shear modulus as a function of $ \phi -{\phi }_{\mathrm{c}} $ for different bending energies and bond lengths. Green line represents shear modulus for hard sphere liquids.

    图 5  (a) 不同链内弯曲能和键长下, 体积弹性模量随着玻璃化转变深度的变化. 绿色线代表硬球液体的体积弹性模量. (a)和(b)的图例是一致的. (b) 不同链内弯曲能和键长下, 静态结构因子的零波矢数值随着玻璃化转变深度的变化.

    Figure 5.  (a) Bulk modulus as a function of $ \phi -{\phi }_{\mathrm{c}} $ for different bending energies and bond lengths. Green line represents bulk modulus for hard sphere liquid. The legend is the same as in panel (b). (b) Static structure factor at zero wavevector for different bending energies and bond lengths. Green line represents corresponding data for hard sphere liquid.

  • [1]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar

    [2]

    Langer J S 2014 Rep. Prog. Phys. 77 042501Google Scholar

    [3]

    Stillinger F H, Debenedetti P G 2013 Annu. Rev. Condens. Matter Phys. 4 263Google Scholar

    [4]

    Biroli G, Urbani P 2016 Nat. Phys. 12 1130Google Scholar

    [5]

    Hill L J, Pinna N, Char K, Pyun J 2015 Prog. Polym. Sci. 40 85Google Scholar

    [6]

    Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, Han Y, Chen H 2010 Phys. Chem. Chem. Phys. 12 11850Google Scholar

    [7]

    Zhao Y, Xu L, Liz-Marzán L M, Kuang H, Ma W, Asenjo-Garcıa A, García de Abajo F J, Kotov N A, Wang L, Xu C 2013 J. Phys. Chem. Lett. 4 641Google Scholar

    [8]

    Hunter G L, Weeks E R 2012 Rep. Prog. Phys. 75 066501Google Scholar

    [9]

    Gotze W 2008 Complex Dynamics of Glass-forming liquids: A Mode-coupling Theory (New York: Oxford University Press) pp177−209

    [10]

    Zwanzig R 2001 Nonequilibrium Statistical Mechanics (New York: Oxford University Press) pp163−165

    [11]

    Schweizer K S, Saltzman E J 2003 J. Chem. Phys. 119 1181Google Scholar

    [12]

    Schweizer K S, Saltzman E J 2004 J. Chem. Phys. 121 1984Google Scholar

    [13]

    Chen K, Saltzman E J, Schweizer K S 2010 Annu. Rev. Condens. Matter Phys. 1 277Google Scholar

    [14]

    Kobelev V, Schweizer K S 2005 Phys. Rev. E 71 021401Google Scholar

    [15]

    Chen K, Schweizer K S 2009 Phys. Rev. Lett. 102 038301Google Scholar

    [16]

    Schweizer K S, Curro J G 1997 Adv. Chem. Phys. 98 1Google Scholar

    [17]

    Chen K, Schweizer K S 2007 J. Chem. Phys. 126 014904Google Scholar

    [18]

    Chen K, Saltzman E J, Schweizer K S 2009 J. Phys. Condens. Matter 21 503101Google Scholar

    [19]

    Martin T B, Gartner T E, Jones R L, Snylder C R, Jayaraman A 2018 Macromolecules 51 2906Google Scholar

    [20]

    Kulshreshtha A, Jayaraman A 2020 Macromolecules 53 4 014904Google Scholar

    [21]

    Dell Z E, Schweizer K S 2018 Soft Matter 14 9132Google Scholar

    [22]

    Gartner T E, Haque F M, Gomi A M, Grayson S M, Hore M J, Jayaraman A 2019 Macromolecules 52 4579Google Scholar

    [23]

    Zhou Y, Schweizer K S 2020 Macromolecules 53 22Google Scholar

    [24]

    Hooper J, Schweizer K S 2006 Macromolecules 39 5133Google Scholar

    [25]

    Zhou Y, Schweizer K S 2020 J. Chem. Phys. 153 114901Google Scholar

    [26]

    Schweizer K S 2005 J. Chem. Phys. 123 244501Google Scholar

    [27]

    Cheng S, Xie S, Carrillo J Y, Carroll B, Martin H, Cao P, Dadmun M D, Sumpter B G, Novikov V N, Schweizer K S, Sokolov A P 2017 ACS Nano 11 1Google Scholar

    [28]

    Zhang B K, Li H, Li J, Chen K, Tian W D, Ma Y Q 2016 Soft Matter 12 8104Google Scholar

    [29]

    Honnell K, Curro J G, Schweizer K S 1990 Macromolecules 23 3496Google Scholar

    [30]

    Hansen J P, McDonald I R 2013 Theory of Simple Liquids (Elsevier: Academic Press) pp105−145

    [31]

    Zhang B K, Li J, Chen K, Tian W D, Ma Y Q 2016 Chin. Phys. B 25 116101Google Scholar

    [32]

    Li J, Zhang B K 2020 Europhys. Lett. 130 56001Google Scholar

  • [1] Chen Kang, Shen Yu-Nian. Nonlinear frictional contact behavior of porous polymer hydrogels for soft robot. Acta Physica Sinica, 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [2] Yan Da-Dong, Zhang Xing-Hua. Recent development on the theory of polymer crystallization. Acta Physica Sinica, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [3] Zhang Chao-Min, Jiang Yong, Yin Deng-Feng, Tao Hui-Jin, Sun Shun-Ping, Yao Jian-Gang. Effects of point defect concentrations on elastic properties of off-stoichiometric L12-type A13Sc. Acta Physica Sinica, 2016, 65(7): 076101. doi: 10.7498/aps.65.076101
    [4] Sun Bo. Collagen network and the mechanical microenvironment of cancer cells. Acta Physica Sinica, 2015, 64(5): 058201. doi: 10.7498/aps.64.058201
    [5] Zhang Wei-Ran, Li Ying-Zi, Wang Xi, Wang Wei, Qian Jian-Qiang. Characterization of elastic properties of a sample by atomic force microscope higher harmonic amplitude. Acta Physica Sinica, 2013, 62(14): 140704. doi: 10.7498/aps.62.140704
    [6] Zhang Zhi-Qiang, Li Cong-Xin, Xie Ping, Wang Peng-Ye. A big cluster model of the PER-TIM interval timer in drosophila cytoplasm for the circadian clock. Acta Physica Sinica, 2012, 61(19): 198701. doi: 10.7498/aps.61.198701
    [7] Zhang Zheng-Gang, Ta De-An. Study of bone fatigue evaluation with ultrasonic guide waves based on elastic modulus. Acta Physica Sinica, 2012, 61(13): 134304. doi: 10.7498/aps.61.134304
    [8] Song Yun-Fei, Yu Guo-Yang, Yin He-Dong, Zhang Ming-Fu, Liu Yu-Qiang, Yang Yan-Qiang. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic. Acta Physica Sinica, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [9] He Zhi-Bing, Yang Zhi-Lin, Yan Jian-Cheng, Song Zhi-Min, Lu Tie-Cheng. Structure and mechanical property of glow discharge polymer. Acta Physica Sinica, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [10] Shi Jing, Gao Kun, Lei Jie, Xie Shi-Jie. A real space study on the conducting polymer with a ground-state nondegenerate structure. Acta Physica Sinica, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [11] Wang Quan, Ding Jian-Ning, He Yu-Liang, Xue Wei, Fan Zhen. Mesoscopic mechanical characterization of hydrogenated silicon thin film and the intrinsic relationship with the microstructure. Acta Physica Sinica, 2007, 56(8): 4834-4840. doi: 10.7498/aps.56.4834
    [12] Ni Xiang-Gui, Yin Jian-Wei. Atomic modeling on the elastic properties of double-walled carbon nanotubes under tension. Acta Physica Sinica, 2006, 55(12): 6522-6525. doi: 10.7498/aps.55.6522
    [13] Wang Yi-Ping, Chen Jian-Ping, Li Xin-Wan, Zhou Jun-He, Shen Hao, Shi Chang-Hai, Zhang Xiao-Hong, Hong Jian-Xun, Ye Ai-Lun. Fast tunable electro-optic polymer waveguide gratings. Acta Physica Sinica, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [14] LIANG ZHONG-CHENG, MING HAI, WANG PEI, ZHANG JIANG-YING, LONG YUN-ZE, XIA YONG, XIE JIAN-PING, ZHANG QI-JIN. NONLINEARLY OPTICAL-INDUCED BIREFRINGENCE IN AZO LIQUID CRYSTAL POLYMERS. Acta Physica Sinica, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
    [15] . Acta Physica Sinica, 2000, 49(2): 262-266. doi: 10.7498/aps.49.262
    [16] CHEN GANG-JIN, XIA ZHONG-FU, ZHANG YE-WEN, ZHANG HONG-YAN. THE POLING STABILITY OF TEFLON AF/NON-LINEAR OPTICAL POLYMER ELECTRET DOUBLE-LAYER FILM. Acta Physica Sinica, 1999, 48(9): 1676-1681. doi: 10.7498/aps.48.1676
    [17] LI JING-DE, CAO WAN-QIANG, WANG YONG. PHENOMENOLOGICAL THEORY OF SLOW POLARIZATION IN POLYMERS. Acta Physica Sinica, 1997, 46(5): 986-993. doi: 10.7498/aps.46.986
    [18] LING FAN, WU CHANG-QIN, SUN XIN. LATTICE VIBRATION SPECTRA OF POLYMERS WITH NONDEGENERATE GROUND STATE. Acta Physica Sinica, 1990, 39(5): 802-808. doi: 10.7498/aps.39.802
    [19] SHUAI ZHI-GANG, SUN XIN, FU ROU-LI. NONLINEAR OPTICAL EFFECTS IN CONDUCTING POLYMERS. Acta Physica Sinica, 1990, 39(3): 375-380. doi: 10.7498/aps.39.375
    [20] Wang Ji-fang, Li Hua-li, Tang Ru-min, Cha Ji-xuan, He Shou-an. THE ELASTIC MODULUS AND ULTRASONIC EQUATION OF STATE FOR FUSED QUARTZ. Acta Physica Sinica, 1982, 31(10): 1423-1430. doi: 10.7498/aps.31.1423
Metrics
  • Abstract views:  6215
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2021
  • Accepted Date:  20 February 2021
  • Available Online:  17 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回