Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters

Lu Xin Xie Meng-Lin Liu Jing Jin Wei Li Chun Georgios Lefkidis Wolfgang Hübner

Citation:

First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters

Lu Xin, Xie Meng-Lin, Liu Jing, Jin Wei, Li Chun, Georgios Lefkidis, Wolfgang Hübner
PDF
HTML
Get Citation
  • In this study, we use first-principles calculations to investigate the geometry, the electronic and the magnetic structure as well as to propose the laser-induced ultrafast spin dynamics on the tubular FeB20 and Fe2B20 clusters. Our results show that the FeB20 is a stable configuration when its Fe atom gets preferably adsorbed inside the B20 tube, while the Fe2B20 is more stable configuration when one of its two Fe atoms is located inside and the other outside the boron tube. In the latter cluster, due to the higher number of d states introduced by the additional magnetic atom, the density-of-states in the low-energy region becomes higher, thus leading to richer spin dynamics. The different local geometries of the two Fe atoms lead to a multitude of many-body states with high degree of spin-density localization. Based on the calculated ground state and excited states and by using suitably tailored laser pulses we achieve ultrafast spin-flip and spin crossover scenarios for both structures. Besides, the spin-flips reach a high fidelity (above 89.7%) and are reversible, while the crossovers have lower fidelity (below 78%) and are irreversible. We also propose an ultrafast spin-transfer process from Fe2 to Fe1 for Fe2B20. The present investigation, in which we predict various ultrafast spin dynamic taken by magnetic atoms absorbed inside and outside of tubular boron clusters, is expected to provide significant theoretical guidance for the future experimental implementation and the potential applications of the relevant spin logic functional devices.
      Corresponding author: Jin Wei, jinwei@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504223, 11872309) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017JM1033)
    [1]

    Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179Google Scholar

    [2]

    Khajetoorians A A, Heinrich A J 2016 Science 352 296Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Prinz G A 1998 Science 282 1660Google Scholar

    [5]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [6]

    Dietl T 2005 J. Magn. Magn. Mater. 290-291 14Google Scholar

    [7]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [8]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [9]

    Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146Google Scholar

    [10]

    Pfau B, Schaffert S, Müller L, Gutt C, Al-shemmary. A, Büttner F, Delaunay R, Düsterer S, Flewett S, Frömter R, Geilhufe J, Guehrs E, Günther C M, Hawaldar R, Hille M, Jaouen N, Kobs A, Li K, Mohanty J, Redlin H, Schlotter W F, Stickler D, Treusch R, Vodungbo B, Kläui M, Oepen H P, Lüning J, Grübel G, Eisebitt S 2012 Nat. Commun. 3 1100Google Scholar

    [11]

    Koopmans B, Ruigrok J J M, Longa F D, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [12]

    Steiauf D, Fähnle M 2009 Phys. Rev. B 79 140401Google Scholar

    [13]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [14]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [15]

    Gómez-Abal R, Hübner W 2002 Phys. Rev. B 65 195114Google Scholar

    [16]

    Zhang Z Z, Cui B, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508Google Scholar

    [17]

    Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412Google Scholar

    [18]

    Lefkidis G, Reyes S A 2016 Phys. Rev. B 94 144433Google Scholar

    [19]

    李春, 杨帆, Lefkidis G, Hübner W 2011 物理学报 60 017802Google Scholar

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802Google Scholar

    [20]

    Chaudhuri D, Xiang H P, Lefkidis G, Hübner W 2014 Phys. Rev. B 90 245113Google Scholar

    [21]

    Jin W, Li C, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 024419Google Scholar

    [22]

    Chaudhuri D, Lefkidis G, Hübner W 2017 Phys. Rev. B 96 184413Google Scholar

    [23]

    Li C, Zhang S B, Jin W, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 184404Google Scholar

    [24]

    Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418Google Scholar

    [25]

    Dong C D, Lefkidis G, Hübner W 2013 Phys. Rev. B 88 214421Google Scholar

    [26]

    Hübner W, Lefkidis G 2014 Phys. Rev. B 90 024401Google Scholar

    [27]

    Liu J, Li C, Jin W, Lefkidis G, Hübner W 2021 Phys. Rev. Lett. 126 037402Google Scholar

    [28]

    Li J H, Sun F, Du H L, Hong H L, Wang K H, Bian J 2019 Univ. Chem. Educ. 34 117Google Scholar

    [29]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [30]

    An W, Bulusu S, Gao Y, Zeng X C 2006 J. Chem. Phys. 124 154310Google Scholar

    [31]

    Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310Google Scholar

    [32]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375Google Scholar

    [33]

    刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 物理学报 58 5355Google Scholar

    Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355Google Scholar

    [34]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Edit. 46 8503Google Scholar

    [35]

    Li W L, Romanescu C, Jian T, Wang L S 2012 J. Am. Chem. Soc. 134 13228Google Scholar

    [36]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306Google Scholar

    [37]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [38]

    Xu C, Cheng L J, Yang J L 2014 J. Chem. Phys. 141 124301Google Scholar

    [39]

    Tam N M, Pham H T, Duong L V, Pham-Ho, My P, Nguyen M T 2015 Phys. Chem. Chem. Phys. 17 3000Google Scholar

    [40]

    Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101Google Scholar

    [41]

    阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪 2014 物理学报 63 243101Google Scholar

    Ruan W, Yu X G, Xie A D, Wu D L, Luo W L 2014 Acta Phys. Sin. 63 243101Google Scholar

    [42]

    雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华 2008 物理学报 57 5491Google Scholar

    Lei X L, Zhu H J, Ge G X, Wang X M, Luo Y H 2008 Acta Phys. Sin. 57 5491Google Scholar

    [43]

    Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S 2015 Nat. Commun. 6 8654Google Scholar

    [44]

    Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I 2012 Nano Lett. 12 2441Google Scholar

    [45]

    Li X Y, Li X X, Yang J L 2019 J. Phys. Chem. Lett. 10 4417Google Scholar

    [46]

    Liu J, Zhang Y M, Li C, Jin W, Lefkidis G, Hübner W 2020 Phys. Rev. B 102 024416Google Scholar

    [47]

    Hübner W, Kersten S, Lefkidis G 2009 Phys. Rev. B 79 184431Google Scholar

    [48]

    Li C, Jin W, Xiang H P, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415Google Scholar

    [49]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian16 Revision B. 01 (Gaussian Inc., Wallingford, CT)

    [50]

    Jin W, Rupp F, Chevalier K, Wolf M M N, Colindres Rojas M, Lefkidis G, Krüger H J, Diller R, Hübner W 2012 Phys. Rev. Lett. 109 267209Google Scholar

    [51]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329Google Scholar

    [52]

    Koseki S, Schmidt M W, Gordon M S 1998 J. Phys. Chem. A 102 10430Google Scholar

    [53]

    Lefkidis G, Hübner W 2005 Phys. Rev. Lett. 95 077401Google Scholar

    [54]

    Cash J R, Karp A H 1990 ACM Trans. Math. Softwave 16 201Google Scholar

    [55]

    Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006Google Scholar

    [56]

    Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2019 Phys. Rev. B 99 134430Google Scholar

    [57]

    Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2018 Phys. Rev. B 98 104431Google Scholar

    [58]

    Wang P P, Qiu M Y, Lu X, Jin W, Li C, Lefkidis G, Hübner W 2020 Phys. Rev. B 101 104414Google Scholar

    [59]

    Hogue R W, Singh S, Brooker S 2018 Chem. Soc. Rev. 47 7303Google Scholar

    [60]

    Rupp F, Chevalier K, Graf M, Schmitz M, Kelm H, Grün A, Zimmer M, Gerhards M, van Wüllen C, Krüger H J, Diller R 2017 Chem. Eur. J. 23 2119Google Scholar

    [61]

    Her J L, Matsuda Y H, Nakano M, Niwa Y, Inada Y 2012 J. Appl. Phys. 111 053921Google Scholar

    [62]

    Létard J F, Guionneau P, Goux-Capes L 2004 Towards Spin Crossover Applications, in Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry (Vol. 235) (Berlin, Heidelberg: Springer) pp221−249

    [63]

    Bousseksou A, Molnár G, Salmon L, Nicolazzi W 2011 Chem. Soc. Rev. 40 3313Google Scholar

  • 图 1  优化后的团簇结构 (侧视图和俯视图) (a) B20; (b) FeB20; (c) Fe2B20; 其中, 俯视图中的键长单位为 Å

    Figure 1.  Side- and top-viewed optimized geometries of clusters: (a) B20; (b) FeB20; (c) Fe2B20. The bond lengths are in Å.

    图 2  FeB20与Fe2B20的SAC-CI能级, 黑色虚线表示单重态, 红色实线表示三重态. 其中, 各自旋动力学所涉及的有关初、末态在未考虑自旋轨道耦合时的能级位置被明确标出

    Figure 2.  The SAC-CI energy levels of clusters FeB20 and Fe2B20. The singlet and triplet terms are denoted by the black dashed and red solid lines, respectively. The related terms from which the involved initial and final states in the spin dynamics to be discussed later originate before the inclusion of SOC are marked.

    图 3  超快自旋翻转动力学 (a) FeB20团簇的自旋翻转过程; (b) Fe2B20团簇的自旋翻转过程. 其中各动力学中初态、末态和中间态分别由黑色虚线、红色实线和点线表示

    Figure 3.  Ultrafast spin flip scenarios: (a) Spin-flip process in FeB20; (b) spin-flip process in Fe2B20. The initial, final, and intermediate states involved in each of the spin-flip processes are represented by the black dashed, red solid, and dotted lines, respectively.

    图 4  Fe2B20团簇上得到的超快自旋转移动力学, 其中初态、末态和中间态分别由黑色虚线、红色实线和点线表示

    Figure 4.  Ultrafast spin-transfer scenario in Fe2B20. The initial, final, and intermediate states involved in the spin-transfer process are represented by the black dashed, red solid, and dotted lines, respectively.

    图 5  超快自旋交叉动力学 (a) FeB20团簇的自旋交叉过程; (b) Fe2B20团簇的自旋交叉过程; 其中各动力学中初态、末态和中间态分别由黑色虚线、红色实线和点线表示

    Figure 5.  Ultrafast spin crossover scenarios: (a) Spin-crossover process in FeB20; (b) spin-crossover process in Fe2B20. The initial, final, and intermediate states involved in each of the spin-crossover processes are represented by black dashed, red solid, and dotted lines, respectively.

    图 A1  团簇FeB20与Fe2B20的其他稳定构型

    Figure A1.  Other stable geometries of clusters FeB20 and Fe2B20.

    表 1  Fe2B20中具有单磁中心自旋局域能态的能量、自旋期望值及自旋密度

    Table 1.  Energies, spin expectation values, and spin density of the states with spin localized on one single magnetic atom for cluster Fe2B20.

    StructureStateEnergy/eV$ \left\langle { {S}_{x} } \right\rangle $$ \left\langle { {S}_{y} } \right\rangle $$ \left\langle { {S}_{z} } \right\rangle $Spin density
    Fe1Fe2B20
    $ \left| {1} \right\rangle $00.38–0.8700.0011.9190.015
    $ \left| {2} \right\rangle $0.001–0.590.7300.0011.9110.015
    $ \left| {5} \right\rangle $0.5130.21–0.4200.0020.9460.023
    $ \left| {6} \right\rangle $0.515–0.120.4600.0020.9620.023
    $ \left| {17} \right\rangle $1.7970.16–0.7200.0221.4730.224
    $ \left| {18} \right\rangle $1.797–0.420.0500.0130.8390.13
    Fe2B20$ \left| {19} \right\rangle $1.7970.260.6700.0211.4320.22
    (B: θ = 90°, φ = 90°)$ \left| {25} \right\rangle $2.0020.41–0.3500.0041.0990.120
    $ \left| {26} \right\rangle $2.003–0.230.5400.0051.1890.133
    $ \left| {39} \right\rangle $2.658–0.02–0.6301.1140.0840.261
    $ \left| {41} \right\rangle $2.659–0.010.6301.1140.0840.261
    $ \left| {56} \right\rangle $2.9480.42–0.6300.0261.4120.305
    $ \left| {57} \right\rangle $2.949–0.520.5500.0261.4110.303
    DownLoad: CSV

    表 2  各自旋动力学过程中初、末态的能量、自旋期望值与自旋密度

    Table 2.  Energies, spin expectation values, and spin densities of the initial and final states of each scenario.

    ScenarioStructureStateEnergy/eV$ \left\langle { {S}_{x} } \right\rangle $$ \left\langle { {S}_{y} } \right\rangle $$ \left\langle { {S}_{z} } \right\rangle $Spin density
    Fe1Fe2
    Flip FeB20$ \left| {4} \right\rangle $ 1.021 –0.94 0 0 1.291
    (B: θ = 90°, φ = 90°) $ \left| {6} \right\rangle $ 1.022 0.94 0 0 1.291
    Fe2B20 $ \left| {8} \right\rangle $ 0.856 0 0 0.89 0.006 1.785
    (B: θ = 0°, φ = 90°) $ \left| {9} \right\rangle $ 0.857 0 0 –0.89 0.006 1.785
    Transfer Fe2B20$ \left| {1} \right\rangle $ 0 0.38 –0.87 0 0.001 1.919
    (B: θ = 90°, φ = 90°) $ \left| {41} \right\rangle $ 2.659 0.01 0.63 0 1.114 0.084
    CrossoverFeB20$ \left| {6} \right\rangle $ 1.022 0.94 0 0 1.291
    (B: θ = 90°, φ = 90°) $ \left| {7} \right\rangle $ 1.133 0 0 0 0
    Fe2B20$ \left| {37} \right\rangle $ 2.371 0 0 0 0 0
    (B: θ = 90°, φ = 90°)$ \left| {45} \right\rangle $ 2.784 0 –0.52 0 0.090 0.873
    DownLoad: CSV

    表 3  超快自旋动力学过程所需的激光参数, 其中 θφ为入射激光在球坐标系下的方位角, γ为入射激光振动方向和光平面的夹角, FWHM为激光脉冲的半高全宽

    Table 3.  Laser parameters for the achieved scenarios. Here, θ and φ denote the angles of the incidence in spherical coordinates, and γ is the angle between the polarization of the light and the optical plane. FWHM is the full width at half maximum of the laser pulse.

    ScenarioStructureInitial/Final
    state
    FidelityLaser parameters
    θ/(º)φ(º)γ/(º)FWHM
    /fs
    Amplitude
    /(atomic units)
    Energy
    /eV
    FlipFeB20$ \left| {4} \right\rangle \to \left| {6} \right\rangle $89.7%112.96.1338.9337.30.009970.299
    Fe2B20$ \left| {8} \right\rangle \to \left| {9} \right\rangle $93.5%156.4122.477.7466.20.006342.114
    TransferFe2B20$ \left| {1} \right\rangle \to \left| {41} \right\rangle $91.9%244.791.4225.392.30.007812.661
    CrossoverFeB20$ \left| {6} \right\rangle \to \left| {7} \right\rangle $77.9%61.0321.482.9318.50.007830.212
    Fe2B20$ \left| {37} \right\rangle \to \left| {45} \right\rangle $74.5%297.2356.1301.5352.00.003060.416
    DownLoad: CSV

    表 A1  FeB20 and Fe2B20团簇所计算能态在未考虑SOC和考虑SOC之后的能量值(单位: eV)

    Table A1.  Energy values of the calculated states of clusters FeB20 and Fe2B20 before and after the inclusion of SOC (in eV)

    FeB20 Fe2B20
    Before SOC After SOC Before SOC After SOC
    Singlet 1.131 (1 1A') 1.133 1.504 (1 1A') 1.489
    1.133 (2 1A') 1.134 1.850 (1 1A'') 1.857
    2.320 (1 1A'') 2.319 2.199 (2 1A') 2.203
    2.545 (SAC) 2.554 2.361 (SAC) 2.371
    2.676 (2 1A'') 2.677 2.587 (3 1A') 2.592
    2.676 (3 1A') 2.677 2.801 (2 1A'') 2.806
    3.130 (3 1A'') 3.132 2.843 (4 1A') 2.845
    3.636 (4 1A'') 3.638 2.996 (3 1A'') 3.002
    4.266 (5 1A'') 4.269 3.133 (5 1A') 3.136
    4.272 (4 1A') 4.272 3.429 (4 1A'') 3.434
    4.282 (5 1A') 4.285 3.632 (5 1A'') 3.637
    Triplet 0.000 (1 3A') 0.000 0.0005 0.001 0.000 (1 3A') 0.000 0.0007 0.002
    1.019 (2 3A') 1.021 1.021 1.022 0.508 (1 3A'') 0.511 0.513 0.515
    1.291 (3 3A') 1.271 1.271 1.294 0.851 (2 3A') 0.854 0.857 0.857
    1.293 (1 3A'') 1.295 1.313 1.317 1.545 (2 3A'') 1.548 1.551 1.570
    1.476 (2 3A'') 1.475 1.478 1.478 1.668 (3 3A') 1.673 1.673 1.673
    2.361 (3 3A'') 2.363 2.363 2.364 1.793 (4 3A') 1.797 1.797 1.797
    2.945 (4 3A'') 2.947 2.947 2.948 1.984 (5 3A') 1.989 1.989 1.989
    3.119 (5 3A'') 3.120 3.121 3.121 1.997 (3 3A'') 2.001 2.002 2.003
    3.462 (4 3A') 3.464 3.465 3.466 2.089 (6 3A') 2.093 2.094 2.094
    3.467 (6 3A'') 3.470 3.471 3.471 2.100 (4 3A'') 2.105 2.105 2.105
    3.471 (7 3A'') 3.473 3.473 3.474 2.112 (7 3A') 2.113 2.116 2.116
    3.743 (5 3A') 3.745 3.745 3.745 2.653 (8 3A') 2.658 2.658 2.659
    3.753 (8 3A'') 3.755 3.755 3.756 2.707 (5 3A'') 2.711 2.713 2.714
    3.990 (6 3A') 3.989 3.990 3.994 2.779 (9 3A') 2.784 2.784 2.784
    4.000 (7 3A') 4.003 4.008 4.008 2.783 (6 3A'') 2.787 2.788 2.788
    4.419 (8 3A') 4.421 4.421 4.421 2.934 (10 3A') 2.939 2.939 2.940
    4.435 (9 3A'') 4.436 4.436 4.438 2.943 (7 3A'') 2.948 2.949 2.952
    4.436 (9 3A') 4.438 4.440 4.440 3.144 (8 3A'') 3.150 3.151 3.152
    4.536 (10 3A') 4.528 4.528 4.539 3.301 (9 3A'') 3.305 3.306 3.306
    4.540 (10 3A'') 4.543 4.554 4.557 3.338 (10 3A'') 3.343 3.343 3.344
    DownLoad: CSV
  • [1]

    Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179Google Scholar

    [2]

    Khajetoorians A A, Heinrich A J 2016 Science 352 296Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Prinz G A 1998 Science 282 1660Google Scholar

    [5]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [6]

    Dietl T 2005 J. Magn. Magn. Mater. 290-291 14Google Scholar

    [7]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [8]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [9]

    Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146Google Scholar

    [10]

    Pfau B, Schaffert S, Müller L, Gutt C, Al-shemmary. A, Büttner F, Delaunay R, Düsterer S, Flewett S, Frömter R, Geilhufe J, Guehrs E, Günther C M, Hawaldar R, Hille M, Jaouen N, Kobs A, Li K, Mohanty J, Redlin H, Schlotter W F, Stickler D, Treusch R, Vodungbo B, Kläui M, Oepen H P, Lüning J, Grübel G, Eisebitt S 2012 Nat. Commun. 3 1100Google Scholar

    [11]

    Koopmans B, Ruigrok J J M, Longa F D, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [12]

    Steiauf D, Fähnle M 2009 Phys. Rev. B 79 140401Google Scholar

    [13]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [14]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [15]

    Gómez-Abal R, Hübner W 2002 Phys. Rev. B 65 195114Google Scholar

    [16]

    Zhang Z Z, Cui B, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508Google Scholar

    [17]

    Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412Google Scholar

    [18]

    Lefkidis G, Reyes S A 2016 Phys. Rev. B 94 144433Google Scholar

    [19]

    李春, 杨帆, Lefkidis G, Hübner W 2011 物理学报 60 017802Google Scholar

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802Google Scholar

    [20]

    Chaudhuri D, Xiang H P, Lefkidis G, Hübner W 2014 Phys. Rev. B 90 245113Google Scholar

    [21]

    Jin W, Li C, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 024419Google Scholar

    [22]

    Chaudhuri D, Lefkidis G, Hübner W 2017 Phys. Rev. B 96 184413Google Scholar

    [23]

    Li C, Zhang S B, Jin W, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 184404Google Scholar

    [24]

    Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418Google Scholar

    [25]

    Dong C D, Lefkidis G, Hübner W 2013 Phys. Rev. B 88 214421Google Scholar

    [26]

    Hübner W, Lefkidis G 2014 Phys. Rev. B 90 024401Google Scholar

    [27]

    Liu J, Li C, Jin W, Lefkidis G, Hübner W 2021 Phys. Rev. Lett. 126 037402Google Scholar

    [28]

    Li J H, Sun F, Du H L, Hong H L, Wang K H, Bian J 2019 Univ. Chem. Educ. 34 117Google Scholar

    [29]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [30]

    An W, Bulusu S, Gao Y, Zeng X C 2006 J. Chem. Phys. 124 154310Google Scholar

    [31]

    Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310Google Scholar

    [32]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375Google Scholar

    [33]

    刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 物理学报 58 5355Google Scholar

    Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355Google Scholar

    [34]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Edit. 46 8503Google Scholar

    [35]

    Li W L, Romanescu C, Jian T, Wang L S 2012 J. Am. Chem. Soc. 134 13228Google Scholar

    [36]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306Google Scholar

    [37]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [38]

    Xu C, Cheng L J, Yang J L 2014 J. Chem. Phys. 141 124301Google Scholar

    [39]

    Tam N M, Pham H T, Duong L V, Pham-Ho, My P, Nguyen M T 2015 Phys. Chem. Chem. Phys. 17 3000Google Scholar

    [40]

    Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101Google Scholar

    [41]

    阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪 2014 物理学报 63 243101Google Scholar

    Ruan W, Yu X G, Xie A D, Wu D L, Luo W L 2014 Acta Phys. Sin. 63 243101Google Scholar

    [42]

    雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华 2008 物理学报 57 5491Google Scholar

    Lei X L, Zhu H J, Ge G X, Wang X M, Luo Y H 2008 Acta Phys. Sin. 57 5491Google Scholar

    [43]

    Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S 2015 Nat. Commun. 6 8654Google Scholar

    [44]

    Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I 2012 Nano Lett. 12 2441Google Scholar

    [45]

    Li X Y, Li X X, Yang J L 2019 J. Phys. Chem. Lett. 10 4417Google Scholar

    [46]

    Liu J, Zhang Y M, Li C, Jin W, Lefkidis G, Hübner W 2020 Phys. Rev. B 102 024416Google Scholar

    [47]

    Hübner W, Kersten S, Lefkidis G 2009 Phys. Rev. B 79 184431Google Scholar

    [48]

    Li C, Jin W, Xiang H P, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415Google Scholar

    [49]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian16 Revision B. 01 (Gaussian Inc., Wallingford, CT)

    [50]

    Jin W, Rupp F, Chevalier K, Wolf M M N, Colindres Rojas M, Lefkidis G, Krüger H J, Diller R, Hübner W 2012 Phys. Rev. Lett. 109 267209Google Scholar

    [51]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329Google Scholar

    [52]

    Koseki S, Schmidt M W, Gordon M S 1998 J. Phys. Chem. A 102 10430Google Scholar

    [53]

    Lefkidis G, Hübner W 2005 Phys. Rev. Lett. 95 077401Google Scholar

    [54]

    Cash J R, Karp A H 1990 ACM Trans. Math. Softwave 16 201Google Scholar

    [55]

    Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006Google Scholar

    [56]

    Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2019 Phys. Rev. B 99 134430Google Scholar

    [57]

    Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2018 Phys. Rev. B 98 104431Google Scholar

    [58]

    Wang P P, Qiu M Y, Lu X, Jin W, Li C, Lefkidis G, Hübner W 2020 Phys. Rev. B 101 104414Google Scholar

    [59]

    Hogue R W, Singh S, Brooker S 2018 Chem. Soc. Rev. 47 7303Google Scholar

    [60]

    Rupp F, Chevalier K, Graf M, Schmitz M, Kelm H, Grün A, Zimmer M, Gerhards M, van Wüllen C, Krüger H J, Diller R 2017 Chem. Eur. J. 23 2119Google Scholar

    [61]

    Her J L, Matsuda Y H, Nakano M, Niwa Y, Inada Y 2012 J. Appl. Phys. 111 053921Google Scholar

    [62]

    Létard J F, Guionneau P, Goux-Capes L 2004 Towards Spin Crossover Applications, in Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry (Vol. 235) (Berlin, Heidelberg: Springer) pp221−249

    [63]

    Bousseksou A, Molnár G, Salmon L, Nicolazzi W 2011 Chem. Soc. Rev. 40 3313Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua. Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism. Acta Physica Sinica, 2024, 73(15): 157501. doi: 10.7498/aps.73.20240646
    [3] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] Hu Qian-Ku, Qin Shuang-Hong, Wu Qing-Hua, Li Dan-Dan, Zhang Bin, Yuan Wen-Feng, Wang Li-Bo, Zhou Ai-Guo. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides. Acta Physica Sinica, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [6] Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan. Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives. Acta Physica Sinica, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [7] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [8] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [9] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [10] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [11] Chen Jia-Hua, Liu En-Ke, Li Yong, Qi Xin, Liu Guo-Dong, Luo Hong-Zhi, Wang Wen-Hong, Wu Guang-Heng. First-principles investigations on tetragonal distortion, electronic structure, magnetism, and phonon dispersion of Ga2XCr (X = Mn, Fe, Co, Ni, Cu) Heusler alloys. Acta Physica Sinica, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [12] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [15] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [16] Xin Xiao-Gui, Chen Xiang, Zhou Jing-Jing, Shi Si-Qi. A first principles study of the lattice dynamics property of LiFePO4. Acta Physica Sinica, 2011, 60(2): 028201. doi: 10.7498/aps.60.028201
    [17] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [18] Li Chun, Yang Fan, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin dynamics research on magnetic nanostructures. Acta Physica Sinica, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [19] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [20] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
Metrics
  • Abstract views:  6051
  • PDF Downloads:  119
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2021
  • Accepted Date:  08 February 2021
  • Available Online:  11 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回