Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy

Zhang He-Lu Qin Min Fang Wu Tang Ke Duan Jun Meng Fan-Hao Shao Dou Hua Hui Liao Zhi-Tang Xie Pin-Hua

Citation:

Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy

Zhang He-Lu, Qin Min, Fang Wu, Tang Ke, Duan Jun, Meng Fan-Hao, Shao Dou, Hua Hui, Liao Zhi-Tang, Xie Pin-Hua
PDF
HTML
Get Citation
  • The quantitative method of iodine monoxide radical (IO) using incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) in the 435–465 nm band is described in this paper. In order to obtain the concentration of IO accurately, the parameters such as the mirror reflectivity, effective cavity length and sample loss of the IBBCEAS system are evaluated. Using the difference of Rayleigh scattering between nitrogen and helium, the reflectivity curve of the high-reflection mirror is obtained. The reflectivity R of the mirror at 436.1 nm of the IO absorption peak is about 0.99982, and the effective absorption optical path reaches 3.83 km under vacuum condition. According to the absorption of O4, the effective cavity length of the modified system is 60.7 cm. The Allan deviation is used to evaluate the performance of the system, and the standard deviation is used to analyze the detection sensitivity of the system. When the time resolution is 60 s, the detection sensitivity (2σ) of the system for IO and NO2 are 1.9 pptv and 20 pptv (part per trillion by volume), respectively. The iodine dissolved in potassium iodide (KI) solution is taken out by the bubbling method and react with ozone after photolysis to produce a stable concentration of IO sample gas. The IO loss in the sampling tube is calibrated, and the results show that the sampling tube has no significant effect on the IO loss. The IBBCEAS system is used to determine the linearity of IO, and the correlation coefficient R2 between the measured concentration of IO and the proportioned concentration in a concentration range from 39 to 530 pptv is 0.99. The IO produced by the reaction of iodine released from kelp with ozone is measured.
      Corresponding author: Qin Min, mqin@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41875154, U19A2044) and the Anhui Provincial Key R&D Program, China (Grant No. 202104i07020010)
    [1]

    Seitz K, Buxmann J, Pohler D, Sommer T, Tschritter J, Neary T, O'Dowd C, Platt U 2010 Atmos. Chem. Phys. 10 2117Google Scholar

    [2]

    Commane R, Seitz K, Bale C S E, Bloss W J, Buxmann J, Ingham T, Platt U, Pöhler D, Heard D E 2011 Atmos. Chem. Phys. 11 6721Google Scholar

    [3]

    Furneaux K L, Whalley L K, Heard D E, Atkinson H M, Bloss W J, Flynn M J, Gallagher M W, Ingham T, Kramer L, Lee J D, Leigh R, McFiggans G B, Mahajan A S, Monks P S, Oetjen H, Plane J M C, Whitehead J D 2010 Atmos. Chem. Phys. 10 3645Google Scholar

    [4]

    Gómez Martín J C, Mahajan A S, Hay T D, Prados-Román C, Ordóñez C, MacDonald S M, Plane J M C, Sorribas M, Gil M, Paredes Mora J F, Agama Reyes M V, Oram D E, Leedham E, Saiz-Lopez A 2013 J. Geophys. Res.: Atmospheres 118 887Google Scholar

    [5]

    Mahajan A S, Shaw M, Oetjen H, Hornsby K E, Carpenter L J, Kaleschke L, Tian-Kunze X, Lee J D, Moller S J, Edwards P, Commane R, Ingham T, Heard D E, Plane J M C 2010 J. Geophys. Res. 115 D20303Google Scholar

    [6]

    Coburn S, Dix B, Sinreich R, Volkamer R 2011 Atmospheric Measurement Techniques 4 2421Google Scholar

    [7]

    Alicke B, Hebestreit K, Stutz J, Platt U 1999 Nature 397 572Google Scholar

    [8]

    Gravestock T J, Blitz M A, Heard D E 2010 Phys. Chem. Chem. Phys. 12 823Google Scholar

    [9]

    Wada R, Beames J M, Orr-Ewing A J 2007 J. Atmos. Chem. 58 69Google Scholar

    [10]

    Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar

    [11]

    Whalley L K, Furneaux K L, Gravestock T, Atkinson H M, Bale C S E, Ingham T, Bloss W J, Heard D E 2007 J. Atmos. Chem. 58 19Google Scholar

    [12]

    Ashu-Ayem E R, Nitschke U, Monahan C, Chen J, Darby S B, Smith P D, O'Dowd C D, Stengel D B, Venables D S 2012 Environ. Sci. Technol. 46 10413Google Scholar

    [13]

    Thalman R, Volkamer R 2010 Atmospheric Measurement Techniques 3 1797Google Scholar

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [15]

    Barbero A, Blouzon C, Savarino J, Caillon N, Dommergue A, Grilli R 2020 Atmospheric Measurement Techniques 13 4317Google Scholar

    [16]

    Wei N, Hu C, Zhou S, Ma Q, Mikuska P, Vecera Z, Gai Y, Lin X, Gu X, Zhao W, Fang B, Zhang W, Chen J, Liu F, Shan X, Sheng L 2017 RSC Adv. 7 56779Google Scholar

    [17]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmospheric Measurement Techniques 11 4531Google Scholar

    [18]

    凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 物理学报 61 140703Google Scholar

    Ling L Y, Qin M, Xie P H, Hu Z R, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sinc. 61 140703Google Scholar

    [19]

    Spietz P, Martin J C G, Burrows J P 2005 J. Photoch. Photobio. A 176 50Google Scholar

    [20]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1Google Scholar

    [21]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4Google Scholar

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmospheric Chem. Phys. 8 7779Google Scholar

    [23]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmospheric Measurement Techniques 12 2499Google Scholar

    [24]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [25]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmospheric Chem. Phys. 11 11581Google Scholar

    [26]

    Tang K, Qin M, Fang W, Duan J, Meng F, Ye K, Zhang H, Xie P, He Y, Xu W, Liu J, Liu W 2020 Atmospheric Measurement Techniques 13 6487Google Scholar

    [27]

    覃志松, 赵南京, 殷高方, 石朝毅, 甘婷婷, 肖雪, 段静波, 张小玲, 陈双, 刘建国, 刘文清 2017 光学学报 37 0730002

    Qin Z S, Zhao N J, Yin G F, Shi C Y, Gan T T, Xiao X, Duan J B, Zhang X L, Chen S, Liu J G, Liu W Q 2017 Acta Opt. Sin. 37 0730002

    [28]

    刘晶, 刘文清, 赵南京, 张玉均, 马明俊, 殷高方, 戴庞达, 王志刚, 王春龙, 段静波, 余晓娅, 方丽 2013 光谱学与光谱分析 33 2443Google Scholar

    Liu J, Liu W, Zhao N, Zhang Y, Ma M, Yin G, Dai P, Wang Z, Wang C, Duan J, Yu X, Fang L 2013 Spectrosc Spect Anal. 33 2443Google Scholar

  • 图 1  基于蓝光LED的非相干宽带腔增强吸收光谱系统组成示意图

    Figure 1.  Schematic of the incoherent broadband cavity-enhanced absorption spectrometer based on blue LED.

    图 2  (a)镜片反射率标定曲线, 黑线为镜片反射率曲线, 红线为氦气谱, 蓝线为氮气谱; (b) 435—465 nm波段主要吸收成分IO, NO2, H2O, O4的吸收截面

    Figure 2.  (a) Reflectivity calibration of the mirror reflectivity. The blue and red curves represent intensity spectrum when the cavity is filled with N2 and He, respectively. The black line represents derived mirror reflectivity curve. (b) Cross sections of NO2 (sky blue line), H2O (grey line), IO (red line) and O4 (black line) in the 435–465 nm band.

    图 3  依次关闭和开启N2吹扫时测量的O2浓度时间序列图

    Figure 3.  Temporal variation of O2 concentration with and without N2 purge gas.

    图 4  IBBCEAS系统的评估 (a)和(b)分别是测量N2背景下光谱反演的NO2和IO的浓度时间序列; (c)和(d)分别是NO2和IO的艾伦方差及标准偏差随平均时间的变化曲线

    Figure 4.  Evaluation of the performance of IBBCEAS instrument. Panels (a) and (b) are the time series of NO2 and IO concentrations with 3 s acquisition time when the cavity is filled with N2. Panels (c) and (d) are the variation curves of Allan and standard deviation plots for NO2 and IO with mean time, respectively

    图 5  三套系统测量的NO2浓度时间序列图, 黑线为中心波长为436 nm的IBBCEAS系统的NO2浓度时间序列, 红线为中心波长为368 nm的IBBCEAS系统的NO2浓度时间序列, 蓝线为LP-DOAS系统的NO2浓度时间序列

    Figure 5.  Comparison of NO2 concentration measured by three different instruments. The black, red and blue dotted lines denote the NO2 concentrations measured by IBBCEAS (center wavelength: 368 nm and 436 nm) and LP-DOAS, respectively.

    图 6  (a) IBBCEAS (中心波长368 nm)和IBBCEAS (中心波长436 nm)测量的NO2浓度的相关性; (b) IBBCEAS (中心波长436 nm)和LP-DOAS测量的NO2浓度的相关性

    Figure 6.  (a) Correlation analysis of NO2 concentrations measured by two IBBCEAS instruments (center wavelength: 368 nm and 436 nm); (b) correlation of NO2 concentrations measured by IBBCEAS instrument (center wavelength: 436 nm) and LP-DOAS.

    图 7  实验室IO的测量示意图

    Figure 7.  Schematic diagram of laboratory IO measurement system.

    图 8  IO采样损耗标定, 黑点表示采用10 m PFA采样管测得的IO, 红点表示采用3 m PFA采样管测得的IO

    Figure 8.  Measurements of IO loss in the sampling tube, black dots correspond to the IO measured with the 10 m PFA sample tube, red dots correspond to the IO measured with the 3 m PFA sample tube.

    图 9  (a)线性实验下IO的浓度时间序列图; (b)测量IO的浓度与配比浓度的相关性

    Figure 9.  (a) Different concentrations of IO measured by IBBCEAS; (b) the correlation analysis between the average of these concentration gradients and the normalized mixing ratio.

    图 10  随时间变化的不同浓度的IO反演实例, 最底层是反应时间为137.5 min的光谱反演的拟合残差

    Figure 10.  Example of retrieved absorption spectra of different IO concentrations varying with time, the fitting residuals of spectral retrieved with reaction time of 137.5 min is showed in the bottom of the figure.

    图 11  (a) IO的浓度时间序列图, 红色三角形代表海带的Fv/Fm值; (b) NO2的浓度时间序列图, 阴影部分面积表示测量浓度的2σ拟合误差

    Figure 11.  (a) Time series of IO concentrations measured by the IBBCEAS. The red triangle denote the Fv/Fm of luminaria; (b) time series of NO2 concentrations, and the shadow area represent the 2σ deviation error.

    表 1  相关IO测量仪器检测限和时间分辨率对比

    Table 1.  Comparison of detection limit and time resolution of correlated IO measuring instruments.

    系统时间分
    辨率
    检测限(2σ)参考文献
    LP-DOAS60 s1.25 pptvCommane等[2] (2011)
    MAX-DOAS60 s1.3 × 1013 molecule·cm–2Coburn等[6] (2011)
    LIF300 s0.6 pptvGravestocket等[8] (2010)
    CRDS30 s10 pptvWada等[9] (2007)
    ML-CEAS300 s20 ppqvGrilli等[10] (2012)
    IBBCEAS60 s30 pptvVaughan等[14] (2008)
    IBBCEAS60 s4.4 pptvAshu-Ayem等[12] (2012)
    IBBCEAS22 min0.6 pptvThalman等[13] (2010)
    IBBCEAS60 s1.9 pptvThis work
    DownLoad: CSV
  • [1]

    Seitz K, Buxmann J, Pohler D, Sommer T, Tschritter J, Neary T, O'Dowd C, Platt U 2010 Atmos. Chem. Phys. 10 2117Google Scholar

    [2]

    Commane R, Seitz K, Bale C S E, Bloss W J, Buxmann J, Ingham T, Platt U, Pöhler D, Heard D E 2011 Atmos. Chem. Phys. 11 6721Google Scholar

    [3]

    Furneaux K L, Whalley L K, Heard D E, Atkinson H M, Bloss W J, Flynn M J, Gallagher M W, Ingham T, Kramer L, Lee J D, Leigh R, McFiggans G B, Mahajan A S, Monks P S, Oetjen H, Plane J M C, Whitehead J D 2010 Atmos. Chem. Phys. 10 3645Google Scholar

    [4]

    Gómez Martín J C, Mahajan A S, Hay T D, Prados-Román C, Ordóñez C, MacDonald S M, Plane J M C, Sorribas M, Gil M, Paredes Mora J F, Agama Reyes M V, Oram D E, Leedham E, Saiz-Lopez A 2013 J. Geophys. Res.: Atmospheres 118 887Google Scholar

    [5]

    Mahajan A S, Shaw M, Oetjen H, Hornsby K E, Carpenter L J, Kaleschke L, Tian-Kunze X, Lee J D, Moller S J, Edwards P, Commane R, Ingham T, Heard D E, Plane J M C 2010 J. Geophys. Res. 115 D20303Google Scholar

    [6]

    Coburn S, Dix B, Sinreich R, Volkamer R 2011 Atmospheric Measurement Techniques 4 2421Google Scholar

    [7]

    Alicke B, Hebestreit K, Stutz J, Platt U 1999 Nature 397 572Google Scholar

    [8]

    Gravestock T J, Blitz M A, Heard D E 2010 Phys. Chem. Chem. Phys. 12 823Google Scholar

    [9]

    Wada R, Beames J M, Orr-Ewing A J 2007 J. Atmos. Chem. 58 69Google Scholar

    [10]

    Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar

    [11]

    Whalley L K, Furneaux K L, Gravestock T, Atkinson H M, Bale C S E, Ingham T, Bloss W J, Heard D E 2007 J. Atmos. Chem. 58 19Google Scholar

    [12]

    Ashu-Ayem E R, Nitschke U, Monahan C, Chen J, Darby S B, Smith P D, O'Dowd C D, Stengel D B, Venables D S 2012 Environ. Sci. Technol. 46 10413Google Scholar

    [13]

    Thalman R, Volkamer R 2010 Atmospheric Measurement Techniques 3 1797Google Scholar

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [15]

    Barbero A, Blouzon C, Savarino J, Caillon N, Dommergue A, Grilli R 2020 Atmospheric Measurement Techniques 13 4317Google Scholar

    [16]

    Wei N, Hu C, Zhou S, Ma Q, Mikuska P, Vecera Z, Gai Y, Lin X, Gu X, Zhao W, Fang B, Zhang W, Chen J, Liu F, Shan X, Sheng L 2017 RSC Adv. 7 56779Google Scholar

    [17]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmospheric Measurement Techniques 11 4531Google Scholar

    [18]

    凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 物理学报 61 140703Google Scholar

    Ling L Y, Qin M, Xie P H, Hu Z R, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sinc. 61 140703Google Scholar

    [19]

    Spietz P, Martin J C G, Burrows J P 2005 J. Photoch. Photobio. A 176 50Google Scholar

    [20]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1Google Scholar

    [21]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4Google Scholar

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmospheric Chem. Phys. 8 7779Google Scholar

    [23]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmospheric Measurement Techniques 12 2499Google Scholar

    [24]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [25]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmospheric Chem. Phys. 11 11581Google Scholar

    [26]

    Tang K, Qin M, Fang W, Duan J, Meng F, Ye K, Zhang H, Xie P, He Y, Xu W, Liu J, Liu W 2020 Atmospheric Measurement Techniques 13 6487Google Scholar

    [27]

    覃志松, 赵南京, 殷高方, 石朝毅, 甘婷婷, 肖雪, 段静波, 张小玲, 陈双, 刘建国, 刘文清 2017 光学学报 37 0730002

    Qin Z S, Zhao N J, Yin G F, Shi C Y, Gan T T, Xiao X, Duan J B, Zhang X L, Chen S, Liu J G, Liu W Q 2017 Acta Opt. Sin. 37 0730002

    [28]

    刘晶, 刘文清, 赵南京, 张玉均, 马明俊, 殷高方, 戴庞达, 王志刚, 王春龙, 段静波, 余晓娅, 方丽 2013 光谱学与光谱分析 33 2443Google Scholar

    Liu J, Liu W, Zhao N, Zhang Y, Ma M, Yin G, Dai P, Wang Z, Wang C, Duan J, Yu X, Fang L 2013 Spectrosc Spect Anal. 33 2443Google Scholar

  • [1] Zhang Ya-Jing, Li Fan, Lei Zhao-Kang, Wang Ming-Hao, Wang Cheng-Hui, Mo Run-Yang. Size quantification of non-spherical bubbles by ultrasound. Acta Physica Sinica, 2023, 72(3): 034301. doi: 10.7498/aps.72.20222074
    [2] Duan Jun, Tang Ke, Qin Min, Wang Dan, Wang Mu-Di, Fang Wu, Meng Fan-Hao, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical. Acta Physica Sinica, 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [3] Ling Liu-Yi, Xie Pin-Hua, Lin Pan-Pan, Huang You-Rui, Qin Min, Duan Jun, Hu Ren-Zhi, Wu Feng-Cheng. A concentration retrieval method for incoherent broadband cavity-enhanced absorption spectroscopy based on O2-O2 absorption. Acta Physica Sinica, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [4] Duan Jun, Qin Min, Fang Wu, Ling Liu-Yi, Hu Ren-Zhi, Lu Xue, Shen Lan-Lan, Wang Dan, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO. Acta Physica Sinica, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [5] Zhu Guo-Liang, Hu Ren-Zhi, Xie Pin-Hua, Chen Hao, Qin Min, Fang Wu, Wang Dan, Xing Xing-Biao. Calibration system for OH radicals based on differential optical absorption spectroscopy. Acta Physica Sinica, 2015, 64(8): 080703. doi: 10.7498/aps.64.080703
    [6] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [7] Guo Lian-Bo, Hao Rong-Fei, Hao Zhong-Qi, Li Kuo-Hu, Shen Meng, Ren Zhao, Li Xiang-You, Zeng Xiao-Yan. Study on the emission spectrum of AlO radical B2+X2+ transition using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(22): 224211. doi: 10.7498/aps.62.224211
    [8] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [9] Zhu Zun-Lue, Lang Jian-Hua, Qiao Hao. Study on spectroscopic properties and molecular constants of the ground and excited states of AsCl free-radical. Acta Physica Sinica, 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [10] Ling Liu-Yi, Qin Min, Xie Pin-Hua, Hu Ren-Zhi, Fang Wu, Jiang Yu, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED optical source. Acta Physica Sinica, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [11] Zhang Shuai, Liu Wen-Qing, Zhang Yu-Jun, Ruan Jun, Kan Rui-Feng, You Kun, Yu Dian-Qiang, Dong Jin-Ting, Han Xiao-Lei. Research of quantitative remote sensing of natural gas pipeline leakage based on laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [12] Li San-Wei, Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Jiang Xiao-Hua, Wang Zhe-Bin, Yang Jia-Min, Jiang Shao-En. Quantitative study of radiation temperature for gold hohlraum on SG-Ⅱ laser facility. Acta Physica Sinica, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [13] Yang Qian-Suo, Jiang Zong-Lin, Peng Zhi-Min, Ding Yan-Jun. Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas. Acta Physica Sinica, 2011, 60(5): 053302. doi: 10.7498/aps.60.053302
    [14] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [15] Zhou Xiao-Guo, Li Quan-Xin, Zhang Qun, Yu Shu-Qin, Shu Yi, Chen Cong-Xiang, Ma Xing-Xiao. . Acta Physica Sinica, 2000, 49(4): 683-686. doi: 10.7498/aps.49.683
    [16] JIN JIN, CHEN YANG, PEI LIN-SEN, HU CHANG-JIN, MA XING-XIAO, CHEN CONG-XIANG. FLUORESCENCE EXCITATION SPECTRUM OF B2Σ+—X2 Σ+ OF AlO RADICAL IN A SUPERSONIC JET. Acta Physica Sinica, 2000, 49(9): 1689-1691. doi: 10.7498/aps.49.1689
    [17] LI QUAN-XIN, ZHANG QUN, SHU JI-NIAN, XU YE-PING, SONG QIN-HUA, CHEN CONG-XIANG, YU SHU-QIN, MA XING-XIAO. STUDY ON THE TWO-PHOTON RESONACE-ENHANCED MULTIPHOTON IONIZATION OF CF RADICALS: DETERMINATION AND ANALYSIS OF 5p RYDBERG STATE. Acta Physica Sinica, 1999, 48(3): 446-452. doi: 10.7498/aps.48.446
    [18] LI QUAN-XIN, SHU JI-NIAN, ZHANG QUN, XU HAI-FENG, YU SHU-QIN, CHEN CONG-XIANG, MA XING-XIAO. RESONANCE ENHANCED MULTIPHOTON INOIZATION STUDIES OF CF2Cl RADICALS BETWEEN 332nm AND 362nm. Acta Physica Sinica, 1998, 47(9): 1470-1476. doi: 10.7498/aps.47.1470
    [19] CHEN YANG, LU QING-ZHENG, MA XING-XIAO, GUI ZHI-FENG, ZHAO XIAN-ZHANG, LU TONG-XING. EMISSION SPECTRUM OF GAS PHASE CCl2. Acta Physica Sinica, 1992, 41(10): 1582-1589. doi: 10.7498/aps.41.1582
    [20] КОЛИЧЕСТВЕННЫИ АНАЛИЗ СПЕКТРОВ ПЛАТИНЫ В КАТАЛИЗАТОРЕ АЛЮМИНИТА НЕФТИ. Acta Physica Sinica, 1959, 15(6): 331-336. doi: 10.7498/aps.15.331
Metrics
  • Abstract views:  5028
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2021
  • Accepted Date:  07 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回