Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Global dynamic behavior analysis of typical magnetic pendulum

Qin Bo Shang Hui-Lin Jiang Hui-Min

Citation:

Global dynamic behavior analysis of typical magnetic pendulum

Qin Bo, Shang Hui-Lin, Jiang Hui-Min
PDF
HTML
Get Citation
  • Based on the analysis of the global dynamic behavior of a typical magnetic pendulum with equilateral triangular arrangement, the initial sensitivity and its mechanism are studied. To begin with, assuming that the position of the magnet can be moved, the dynamical model of a typical magnetic pendulum is established via Newton’s second law. Furthermore, the number of equilibrium points under different magnet positions and their stability are analyzed. Upon this, the initial sensitivity phenomenon and the evolution of fractal basin of attraction of point attractors under different magnet positions are presented. Finally, the initial sensitivity phenomenon is verified experimentally. It is found that the coexistence of multiple attractors generally appears in this type of magnetic pendulum. The initial sensitivity can be attributed to the fractal basin of attraction of fixed point attractors, in which the positions of the fixed point attractors do not overlap with the projected positions of the center of the magnet on the plane where the magnet is located, but there is a slight deviation. When the position of the swing ball can be projected onto the centroids of three equilateral triangles corresponding to the magnets, the sizes of the three attractors’ attraction domains will be similar, whose boundaries are fractal and centrosymmetric, thus, the initial sensitivity is obvious. It also follows that the position of moving magnet affects the nature of basin of attraction directly, i.e., the magnet which is closest to the projection point of the balance position of the swing ball has a great influence on the swing ball: the domain of attraction of the attractor whose is the closest to the position will increase significantly, while the attractor domains of the other attractors will be eroded obviously. This paper has potential applications in designing the magnetic pendulum systems.
      Corresponding author: Shang Hui-Lin, suliner60@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472176)
    [1]

    Siahmakoun A 1997 Am. J. Phys. 65 393Google Scholar

    [2]

    Stefański K, Buszko K, Piecyk K 2010 Chaos 20 033117Google Scholar

    [3]

    Sathiyadevi K, Karthiga S, Chandrasekar V K 2019 Commun. Nonlinear Sci. Numer. Simul. 72 586Google Scholar

    [4]

    Souza A P, Savi M A, Iunes F H 2006 J. Sound Vib. 294 585Google Scholar

    [5]

    Woltering, Markus 2000 Phys. Rev. Lett. 84 630Google Scholar

    [6]

    Marino F, Marin F 2013 Phys. Rev. E 87 052906Google Scholar

    [7]

    杨科利 2016 物理学报 65 100501Google Scholar

    Yang K L 2016 Acta Phys. Sin. 65 100501Google Scholar

    [8]

    Zhang S, Zheng J H, Wang X P, Zeng Z G, He S B 2020 Nonlinear Dyn. 102 2821Google Scholar

    [9]

    Lai Q, Wan Z Q, Paul D K K, Hilaire F 2020 Commun. Nonlinear Sci. Numer. Simul. 89 105341Google Scholar

    [10]

    Lai Q 2021 Int. J. Bifurcat. Chaos 31 2150013Google Scholar

    [11]

    Sanz M G 2001 Int. J. Electr. Eng. Educ. 38 26Google Scholar

    [12]

    Kraftmakher Y 2007 Eur. J. Phys. 28 1007Google Scholar

    [13]

    Wijata A, Polczyński K, Awrejcewicz J 2020 Mech. Syst. Sig. Process. 150 107229Google Scholar

    [14]

    Motter A E, Gruiz M, Károlyi G, Tél T 2013 Phys. Rev. Lett. 111 194101Google Scholar

    [15]

    谭宁, 徐健学, 康艳梅, 陈永红 2003 物理学报 52 2989Google Scholar

    Tan N, Xu J X, Kang Y M, Chen Y H 2003 Acta Phys. Sin. 52 2989Google Scholar

    [16]

    Sinacore J 2010 Phys. Teach. 48 448Google Scholar

    [17]

    冯进铃, 徐伟 2011 物理学报 60 080502Google Scholar

    Feng J L, Xu W 2011 Acta Phys. Sin. 60 080502Google Scholar

    [18]

    Zhang S, Zeng Y C, Li Z J 2018 Chin. J. Phys. 56 793Google Scholar

    [19]

    Khomeriki G 2016 Phys. Lett. A 380 2382Google Scholar

    [20]

    D’Alessio S 2020 Phys. Educ. 55 063002Google Scholar

    [21]

    Lorenz E N 1963 New York Acad. Sci. 25 409Google Scholar

    [22]

    Mann B P 2009 J. Sound Vib. 323 864Google Scholar

    [23]

    James M, Christian C F, Holly A J 2020 Math. Today 70 354020

    [24]

    Peitgen H O, Jürgens H, Saupe D 2004 Chaos and Fractals: New Frontiers of Science (Dordrecht: Springer) pp708–711

    [25]

    胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第125页

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) p125 (in Chinese)

    [26]

    赵建立, 王文省 2016 高等代数 (北京: 高等教育出版社) 第279−282页

    Zhao J L, Wang W S 2016 Higher Algebra (Beijing: Higher Education Press) pp279−282 (in Chinese)

  • 图 1  磁力摆 (a) 实物; (b) 改进模型; (c) 简化计算模型

    Figure 1.  Magnetic pendulum: (a) Real object; (b) improved model; (c) simplified calculation model.

    图 2  摆球与单个磁铁位置示意图

    Figure 2.  Position diagram of pendulum ball and single magnet.

    图 3  摆球不同出发位置时运动轨迹和时间历程 (a) 磁铁位置未移动时; (b) 磁铁位置移动时

    Figure 3.  Movement trajectory and time history diagram of the swing ball at different starting positions: (a) When the magnet position is not moved; (b) when the magnet position moves.

    图 4  磁铁位置未移动时分形吸引域

    Figure 4.  Diagram of fractal domain of attraction when magnet position is not moved.

    图 5  向左方向平移时分形吸引域随磁铁位置演变 (a) $ {d_{{L_1}}} = - \sqrt 3 /3 $; (b) $ {d_{{L_2}}} = - 2\sqrt 3 /3 $; (c) $ {d_{{L_3}}} = - \sqrt 3 $

    Figure 5.  Evolution of fractal basin of attraction of the attractors under different translation distances of magnet position to the left: (a) $ {d_{{L_1}}} = - \sqrt 3 /3 $; (b) $ {d_{{L_2}}} = - 2\sqrt 3 /3 $; (c) $ {d_{{L_3}}} = - \sqrt 3 $.

    图 6  向右方向平移时分形吸引域随磁铁位置演变 (a) $ {d_{{R_1}}} = \sqrt 3 /3 $; (b) $ {d_{{R_2}}} = 2\sqrt 3 /3 $; (c) $ {d_{{R_3}}} = \sqrt 3 $

    Figure 6.  Evolution of fractal basin of attraction of the attractors under different translation distances of magnet position to the right: (a) $ {d_{{R_1}}} = \sqrt 3 /3 $; (b) $ {d_{{R_2}}} = 2\sqrt 3 /3 $; (c) $ {d_{{R_3}}} = \sqrt 3 $.

    图 7  磁力摆实验装置 (a) 实验整体装置; (b) 电路连接

    Figure 7.  An experimental apparatus for a magnetic pendulum: (a) Overall experimental device; (b) circuit connection.

    图 8  摆球不同出发位置时光轨运动轨迹 (a) 第1次释放摆球光轨运动轨迹; (b) 第2次释放摆球光轨运动轨迹; (c) 第3次释放摆球光轨运动轨迹

    Figure 8.  Trajectory photo of light track in different starting positions of pendulum ball: (a) The trajectory photo of the first release pendulum; (b) the trajectory photo of the second release pendulum; (c) the trajectory photo of the third release pendulum.

    表 1  磁铁移动位置

    Table 1.  Magnet moving position.

    序号组别移动距离磁铁中心投影到$ xy $平面的位置
    0$ {d_o} = 0 $$ (x_o^A, \;y_o^A) = (2\sqrt 3 /3, \;0) $, $ (x_o^B, \;y_o^B) = ( - \sqrt 3 /3, \;1) $, $ (x_o^C, \;y_o^C) = ( - \sqrt 3 /3, \; - 1) $
    1$ {d_{{L_1}}} = - \sqrt 3 /3 $$ (x_{{L_1}}^A, \;y_o^A) = (\sqrt 3 /3, \;0) $, $ (x_{{L_1}}^B, \;y_o^B) = ( - 2\sqrt 3 /3, \;1) $, $ (x_{{L_1}}^C, \;y_o^C) = ( - 2\sqrt 3 /3, \; - 1) $
    2$ {d_{{L_2}}} = - 2\sqrt 3 /3 $$ (x_{{L_2}}^A, \;y_o^A) = (0, \;0) $, $ (x_{{L_2}}^B, \;y_o^B) = ( - \sqrt 3, \;1) $, $ (x_{{L_2}}^C, \;y_o^C) = ( - \sqrt 3, \; - 1) $
    3$ {d_{{L_3}}} = - \sqrt 3 $$ (x_{{L_3}}^A, \;y_o^A) = ( - \sqrt 3 /3, \;0) $, $ (x_{{L_3}}^B, \;y_o^B) = ( - 4\sqrt 3 /3, \;1) $, $ (x_{{L_3}}^C, \;y_o^C) = ( - 4\sqrt 3 /3, \; - 1) $
    4$ {d_{{R_1}}} = \sqrt 3 /3 $$ (x_{{R_1}}^A, \;y_o^A) = (\sqrt 3, \;0) $, $ (x_{{R_1}}^B, \;y_o^B) = (0, \;1) $, $ (x_{{R_1}}^C, \;y_o^C) = (0, \; - 1) $
    5$ {d_{{R_2}}} = 2\sqrt 3 /3 $$ (x_{{R_2}}^A, \;y_o^A) = (4\sqrt 3 /3, \;0) $, $ (x_{{R_2}}^A, \;y_o^B) = (\sqrt 3 /3, \;1) $, $ (x_{{R_2}}^C, \;y_o^C) = (\sqrt 3 /3, \; - 1) $
    6$ {d_{{R_3}}} = \sqrt 3 $$ (x_{{R_3}}^A, \;y_o^A) = (5\sqrt 3 /3, \;0) $, $ (x_{{R_3}}^B, \;y_o^B) = (2\sqrt 3 /3, \;1) $, $ (x_{{R_3}}^C, \;y_o^C) = (2\sqrt 3 /3, \; - 1) $
    DownLoad: CSV

    表 2  7组不同磁铁位置的平衡点

    Table 2.  Seven groups of equilibrium points with different magnet positions.

    组别序号移动距离平衡点位置
    0$ {d_o} = 0 $$ (\tilde x_o^1, \;\tilde y_o^1) = (1.139, \;0) $, $ (\tilde x_o^2, \;\tilde y_o^2) = ( - 0.570, \;0.986) $, $ (\tilde x_o^3, \;\tilde y_o^3) = ( - 0.570, \; - 0.986) $,
    $ (\tilde x_o^4, \;\tilde y_o^4) = (0.054, \;0.094) $, $ (\tilde x_o^5, \;\tilde y_o^5) = (0.054, \; - 0.094) $, $ (\tilde x_o^6, \;\tilde y_o^6) = ( - 0.108, \;0) $
    1$ {d_{{L_1}}} = - \sqrt 3 /3 $$ (\tilde x_{{L_1}}^1, \;\tilde y_{{L_1}}^1) = (0.566, \;0) $, $ (\tilde x_{{L_1}}^2, \;\tilde y_{{L_1}}^2) = ( - 1.142, \;0.986) $, $ (\tilde x_{{L_1}}^3, \;\tilde y_{{L_1}}^3) = ( - 1.142, \; - 0.986) $,
    $ (\tilde x_{{L_1}}^4, \;\tilde y_{{L_1}}^4) = ( - 0.521, \;0.343) $, $ (\tilde x_{{L_1}}^5, \;\tilde y_{{L_1}}^5) = ( - 0.521, \; - 0.343) $
    2$ {d_{{L_2}}} = - 2\sqrt 3 /3 $$ (\tilde x_{{L_2}}^1, \;\tilde y_{{L_2}}^1) = ( - 0.007, \;0) $, $ (\tilde x_{{L_2}}^2, \;\tilde y_{{L_2}}^2) = ( - 1.715, \;0.986) $, $ (\tilde x_{{L_2}}^3, \;\tilde y_{{L_2}}^3) = ( - 1.715, \; - 0.986) $,
    $ (\tilde x_{{L_2}}^4, \;\tilde y_{{L_2}}^4) = ( - 1.105, \;0.475) $, $ (\tilde x_{{L_2}}^5, \;\tilde y_{{L_2}}^5) = ( - 1.105, \; - 0.475) $
    3$ {d_{{L_3}}} = - \sqrt 3 $$ (\tilde x_{{L_3}}^1, \;\tilde y_{{L_3}}^1) = ( - 0.579, \;0) $, $ (\tilde x_{{L_3}}^2, \;\tilde y_{{L_3}}^2) = ( - 2.288, \;0.986) $, $ (\tilde x_{{L_3}}^3, \;\tilde y_{{L_3}}^3) = ( - 2.288, \; - 0.986) $,
    $ (\tilde x_{{L_3}}^4, \;\tilde y_{{L_3}}^4) = ( - 1.697, \;0.573) $, $ (\tilde x_{{L_3}}^5, \;\tilde y_{{L_3}}^5) = ( - 1.697, \; - 0.573) $
    4$ {d_{{R_1}}} = \sqrt 3 /3 $$ (\tilde x_{{R_1}}^1, \;\tilde y_{{R_1}}^1) = (1.712, \;0) $, $ (\tilde x_{{R_1}}^2, \;\tilde y_{{R_1}}^2) = (0.003, \;0.986) $, $ (\tilde x_{{R_1}}^3, \;\tilde y_{{R_1}}^3) = (0.003, \; - 0.986) $,
    $ (\tilde x_{{R_1}}^4, \;\tilde y_{{R_1}}^4) = (0.847, \;0) $, $ (\tilde x_{{R_1}}^5, \;\tilde y_{{R_1}}^5) = (0.177, \;0) $
    5$ {d_{{R_2}}} = 2\sqrt 3 /3 $$ (\tilde x_{{R_2}}^1, \;\tilde y_{{R_2}}^1) = (2.284, \;0) $, $ (\tilde x_{{R_2}}^2, \;\tilde y_{{R_2}}^2) = (0.576, \;0.986) $, $ (\tilde x_{{R_2}}^3, \;\tilde y_{{R_2}}^3) = (0.576, \; - 0.986) $,
    $ (\tilde x_{{R_2}}^4, \;\tilde y_{{R_2}}^4) = (1.541, \;0) $, $ (\tilde x_{{R_2}}^5, \;\tilde y_{{R_2}}^5) = (0.595, \;0) $
    6$ {d_{{R_3}}} = \sqrt 3 $$ (\tilde x_{{R_3}}^1, \;\tilde y_{{R_3}}^1) = (2.857, \;0) $, $ (\tilde x_{{R_3}}^2, \;\tilde y_{{R_3}}^2) = (1.149, \;0.986) $, $ (\tilde x_{{R_3}}^3, \;\tilde y_{{R_3}}^3) = (1.149, \; - 0.986) $,
    $ (\tilde x_{{R_3}}^4, \;\tilde y_{{R_3}}^4) = (2.200, \;0) $, $ (\tilde x_{{R_3}}^5, \;\tilde y_{{R_3}}^5) = (1.025, \;0) $
    DownLoad: CSV

    表 3  磁力摆系统移动磁铁位置时稳定的平衡点判定结果

    Table 3.  Results of judging the stable equilibrium point when the magnetic pendulum moves the position of the magnet.

    序号组别平衡点位置平衡点特征值特征子空间维数稳定性
    0 $ (\tilde x_o^1, \;\tilde y_o^1) $ $\lambda _{1, \;2}^1 = \pm 2.61{\rm{i} }$, $ \lambda _{3, \;4}^1 = 0 $ 4 稳定
    $ (\tilde x_o^2, \;\tilde y_o^2) $$ \lambda _{1, \;2}^2 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 1.07{\rm{i}} $4稳定
    $ (\tilde x_o^3, \;\tilde y_o^3) $$ \lambda _{1, \;2}^3 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 1.07{\rm{i}} $4稳定
    1$ (\tilde x_{{L_1}}^1, \;\tilde y_{{L_1}}^1) $$ \lambda _{1, \;2}^1 = \pm 6.28{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{L_1}}^2, \;\tilde y_{{L_1}}^2) $$ \lambda _{1, \;2}^2 = \pm 1.53{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 0.87{\rm{i}} $4稳定
    $ (\tilde x_{{L_1}}^3, \;\tilde y_{{L_1}}^3) $$ \lambda _{1, \;2}^3 = \pm 1.53{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 0.87{\rm{i}} $4稳定
    2$ (\tilde x_{{L_2}}^1, \;\tilde y_{{L_2}}^1) $$ \lambda _{1, \;2}^1 = \pm 0.52{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{L_2}}^2, \;\tilde y_{{L_2}}^2) $$ \lambda _{1, \;2}^2 = \pm 1.09{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 0.49{\rm{i}} $4稳定
    $ (\tilde x_{{L_2}}^3, \;\tilde y_{{L_2}}^3) $$\lambda _{1, \;2}^3 = \pm 1.09{\rm{i} }$, $\lambda _{3, \;4}^3 = \pm 0.49{\rm{i} }$4稳定
    3$ (\tilde x_{{L_3}}^1, \tilde y_{{L_3}}^1) $$\lambda _{1, \;2}^1 = \pm 6.39{\rm{i} }$, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{L_3}}^2, \tilde y_{{L_3}}^2) $$\lambda _{1, \;2}^2 = \pm 0.80{\rm{i} }$, $\lambda _{3, \;4}^2 = \pm 0.28{\rm{i} }$4稳定
    $ (\tilde x_{{L_3}}^3, \tilde y_{{L_3}}^3) $$\lambda _{1, \;2}^3 = \pm 0.80{\rm{i} }$, $\lambda _{3, \;4}^3 = \pm 0.28{\rm{i} }$4稳定
    4$ (\tilde x_{{R_1}}^1, \tilde y_{{R_1}}^1) $$ \lambda _{1, \;2}^1 = \pm 1.47{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{R_1}}^2, \tilde y_{{R_1}}^2) $$ \lambda _{1, \;2}^2 = \pm 3.18{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 0.01{\rm{i}} $4稳定
    $ (\tilde x_{{R_1}}^3, \tilde y_{{R_1}}^3) $$\lambda _{1, \;2}^3 = \pm 3.18{\rm{i} }$, $ \lambda _{3, \;4}^3 = \pm 0.01{\rm{i}} $4稳定
    5$ (\tilde x_{{R_2}}^1, \;\tilde y_{{R_2}}^1) $$ \lambda _{1, \;2}^1 = \pm 0.96{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{R_2}}^2, \;\tilde y_{{R_2}}^2) $$ \lambda _{1, \;2}^2 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 1.08{\rm{i}} $4稳定
    $ (\tilde x_{{R_2}}^3, \;\tilde y_{{R_2}}^3) $$ \lambda _{1, \;2}^3 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 1.08{\rm{i}} $4稳定
    6$ (\tilde x_{{R_3}}^1, \;\tilde y_{{R_3}}^1) $$ \lambda _{1, \;2}^1 = \pm 0.69{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{R_3}}^2, \;\tilde y_{{R_3}}^2) $$ \lambda _{1, \;2}^2 = \pm 1.54{\rm{i}} $, $\lambda _{3, \;4}^2 = \pm 0.87{\rm{i} }$4稳定
    $ (\tilde x_{{R_3}}^3, \;\tilde y_{{R_3}}^3) $$ \lambda _{1, \;2}^3 = \pm 1.54{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 0.87{\rm{i}} $4稳定
    DownLoad: CSV
  • [1]

    Siahmakoun A 1997 Am. J. Phys. 65 393Google Scholar

    [2]

    Stefański K, Buszko K, Piecyk K 2010 Chaos 20 033117Google Scholar

    [3]

    Sathiyadevi K, Karthiga S, Chandrasekar V K 2019 Commun. Nonlinear Sci. Numer. Simul. 72 586Google Scholar

    [4]

    Souza A P, Savi M A, Iunes F H 2006 J. Sound Vib. 294 585Google Scholar

    [5]

    Woltering, Markus 2000 Phys. Rev. Lett. 84 630Google Scholar

    [6]

    Marino F, Marin F 2013 Phys. Rev. E 87 052906Google Scholar

    [7]

    杨科利 2016 物理学报 65 100501Google Scholar

    Yang K L 2016 Acta Phys. Sin. 65 100501Google Scholar

    [8]

    Zhang S, Zheng J H, Wang X P, Zeng Z G, He S B 2020 Nonlinear Dyn. 102 2821Google Scholar

    [9]

    Lai Q, Wan Z Q, Paul D K K, Hilaire F 2020 Commun. Nonlinear Sci. Numer. Simul. 89 105341Google Scholar

    [10]

    Lai Q 2021 Int. J. Bifurcat. Chaos 31 2150013Google Scholar

    [11]

    Sanz M G 2001 Int. J. Electr. Eng. Educ. 38 26Google Scholar

    [12]

    Kraftmakher Y 2007 Eur. J. Phys. 28 1007Google Scholar

    [13]

    Wijata A, Polczyński K, Awrejcewicz J 2020 Mech. Syst. Sig. Process. 150 107229Google Scholar

    [14]

    Motter A E, Gruiz M, Károlyi G, Tél T 2013 Phys. Rev. Lett. 111 194101Google Scholar

    [15]

    谭宁, 徐健学, 康艳梅, 陈永红 2003 物理学报 52 2989Google Scholar

    Tan N, Xu J X, Kang Y M, Chen Y H 2003 Acta Phys. Sin. 52 2989Google Scholar

    [16]

    Sinacore J 2010 Phys. Teach. 48 448Google Scholar

    [17]

    冯进铃, 徐伟 2011 物理学报 60 080502Google Scholar

    Feng J L, Xu W 2011 Acta Phys. Sin. 60 080502Google Scholar

    [18]

    Zhang S, Zeng Y C, Li Z J 2018 Chin. J. Phys. 56 793Google Scholar

    [19]

    Khomeriki G 2016 Phys. Lett. A 380 2382Google Scholar

    [20]

    D’Alessio S 2020 Phys. Educ. 55 063002Google Scholar

    [21]

    Lorenz E N 1963 New York Acad. Sci. 25 409Google Scholar

    [22]

    Mann B P 2009 J. Sound Vib. 323 864Google Scholar

    [23]

    James M, Christian C F, Holly A J 2020 Math. Today 70 354020

    [24]

    Peitgen H O, Jürgens H, Saupe D 2004 Chaos and Fractals: New Frontiers of Science (Dordrecht: Springer) pp708–711

    [25]

    胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第125页

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) p125 (in Chinese)

    [26]

    赵建立, 王文省 2016 高等代数 (北京: 高等教育出版社) 第279−282页

    Zhao J L, Wang W S 2016 Higher Algebra (Beijing: Higher Education Press) pp279−282 (in Chinese)

  • [1] Jia Mei-Mei, Jiang Hao-Gang, Li Wen-Jing. Generation and application of novel Chua multi-scroll chaotic attractors. Acta Physica Sinica, 2019, 68(13): 130503. doi: 10.7498/aps.68.20182183
    [2] Xing Ya-Qing, Chen Xiao-Ke, Zhang Zheng-Di, Bi Qin-Sheng. Mechanism of bursting oscillations with multiple equilibrium states and the analysis of the structures of the attractors. Acta Physica Sinica, 2016, 65(9): 090501. doi: 10.7498/aps.65.090501
    [3] Yang Ke-Li. Synchronization transition with coexistence of attractors in coupled discontinuous system. Acta Physica Sinica, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [4] Peng Zai-Ping, Wang Chun-Hua, Lin Yuan, Luo Xiao-Wen. A novel four-dimensional multi-wing hyper-chaotic attractor and its application in image encryption. Acta Physica Sinica, 2014, 63(24): 240506. doi: 10.7498/aps.63.240506
    [5] Ai Xing-Xing, Sun Ke-Hui, He Shao-Bo. Compound attractors between different chaotic systems. Acta Physica Sinica, 2014, 63(4): 040503. doi: 10.7498/aps.63.040503
    [6] Ai Xing-Xing, Sun Ke-Hui, He Shao-Bo, Wang Hui-Hai. Design and application of multi-scroll chaotic attractors based on simplified Lorenz system. Acta Physica Sinica, 2014, 63(12): 120511. doi: 10.7498/aps.63.120511
    [7] Huang Yun. A family of multi-wing chaotic attractors and its circuit implementation. Acta Physica Sinica, 2014, 63(8): 080505. doi: 10.7498/aps.63.080505
    [8] Lin Yuan, Wang Chun-Hua, Xu Hao. Grid multi-scroll chaotic attractors in hybrid image encryption algorithm based on current conveyor. Acta Physica Sinica, 2012, 61(24): 240503. doi: 10.7498/aps.61.240503
    [9] Chen Shi-Bi, Zeng Yi-Cheng, Xu Mao-Lin, Chen Jia-Sheng. Construction of grid multi-scroll chaotic attractors and its circuit implementation with polynomial and step function. Acta Physica Sinica, 2011, 60(2): 020507. doi: 10.7498/aps.60.020507
    [10] Bao Bo-Cheng, Liu Zhong, Xu Jian-Ping, Zhu Lei. Generation of multi-scroll hyperchaotic attractor based on Colpitts oscillator model. Acta Physica Sinica, 2010, 59(3): 1540-1548. doi: 10.7498/aps.59.1540
    [11] Zhang Chao-Xia, Yu Si-Min. Generation of grid multi-scroll Chua’s chaotic attractors with combination of hysteresis and step series. Acta Physica Sinica, 2009, 58(1): 120-130. doi: 10.7498/aps.58.120
    [12] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [13] Luo Xiao-Hua, Li Hua-Qing, Dai Xiang-Guang. A family of multi-scroll chaotic attractors and its circuit design. Acta Physica Sinica, 2008, 57(12): 7511-7516. doi: 10.7498/aps.57.7511
    [14] Wang Fa-Qiang, Liu Chong-Xin. Simulation of a family of multi-folded torus and multi-scroll chaotic attractors. Acta Physica Sinica, 2007, 56(4): 1983-1987. doi: 10.7498/aps.56.1983
    [15] Wang Fa-Qiang, Liu Chong-Xin, Lu Jun-Jie. Emulation of multi-scroll chaotic attractors in four-dimensional systems. Acta Physica Sinica, 2006, 55(7): 3289-3294. doi: 10.7498/aps.55.3289
    [16] Yu Si-Min. Circuit implementation for generating three-dimensional multi-scroll chaotic att ractors via triangular wave series. Acta Physica Sinica, 2005, 54(4): 1500-1509. doi: 10.7498/aps.54.1500
    [17] Yu Si-Min, Lin Qing-Hua, Qiu Shui-Sheng. A family of multiple-folded torus chaotic attractors. Acta Physica Sinica, 2004, 53(7): 2084-2088. doi: 10.7498/aps.53.2084
    [18] Chen Yong-Hong, Zhou Tong, He Dai-Hai, Xu Jian-Xue, Shu Wen-Tian. . Acta Physica Sinica, 2002, 51(4): 731-735. doi: 10.7498/aps.51.731
    [19] Wang An-Liang, Yang Chun-Xin. Grassberger-Procaccia algorithm for evaluating the fractal characteristic of strange attractors. Acta Physica Sinica, 2002, 51(12): 2719-2729. doi: 10.7498/aps.51.2719
    [20] TAN NING, CHEN YONG-HONG, XU JIAN-XUE. RIDDLED BASIN IN CHAOTIC SYNCHRONIZATION SYSTEM: LINEAR COUPLED STANDARD TENT MA PS. Acta Physica Sinica, 2000, 49(7): 1215-1220. doi: 10.7498/aps.49.1215
Metrics
  • Abstract views:  5902
  • PDF Downloads:  116
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2021
  • Accepted Date:  21 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回