Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical quantum phase transitions in transverse field XY chain after a double quench

Fu Hao Cao Kai-Yuan Zhong Ming Tong Pei-Qing

Citation:

Dynamical quantum phase transitions in transverse field XY chain after a double quench

Fu Hao, Cao Kai-Yuan, Zhong Ming, Tong Pei-Qing
PDF
HTML
Get Citation
  • Nonequilibrium dynamics of quantum many-body systems have achieved rapid progress from both theoretical and experimental perspectives. Recently, dynamical quantum phase transitions (DQPTs), which describe the nonanalytic behaviors of physical quantities during the time evolution, have attracted a lot of interest. The most studied protocol to drive the system out of equilibrium is via a quantum quench. Recently, the DQPTs in the Ising chain and ANNNI chain after double quench are studied. Double quench means that the Hamiltonian of the system is abruptly changed from $H_{0}$ to $H_{1}$, and then abruptly changed from $H_{1}$ to $H_{2}$ after a evolutionary time T. One can control at will whether or not DQPTs appear after the second quench by varying T. In this paper, we study the DQPTs arising from a double quench in the anisotropic $XY$ chain in a transverse field. The anisotropic $XY$ chain in a transverse field has two kinds of quantum phase transitions (Ising transition and anisotropic transition). We discuss mainly the effects of quench paths on the DQPTs of the transverse field $XY$ chain. By calculating the rate function of the Loschmidt echo and Fisher zeros, we find that there are three typical types of the critical times of DQPTs in the plane of the T and the evolution time t. Type I of critical times, which occurs only in a certain range of T, is related to the protocol of the Hamiltonian abruptly changed from $H_{0}$ to $H_{1}$. Type II of critical times, which occurs all the time, is related to the protocol of the Hamiltonian abruptly changed from $H_{0}$ to $H_{2}$. Type III of critical times, which occurs all the time, is related to the protocols of the Hamiltonian abruptly changed from $H_{0}$ to $H_{1}$ and $H_{0}$ to $H_{2}$. When the double quench paths pass through the same kind of transition point, only the critical times corresponding to Type I will appear after the second quench. When the double quench paths pass through different kinds of transition points, the critical times after the second quench will appear any two of the above three types, which depend on the choice of quench path.
      Corresponding author: Tong Pei-Qing, pqtong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975126, 11575087)
    [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [2]

    Dziarmaga J 2010 Adv. Phys. 59 1063Google Scholar

    [3]

    Eisert J, Friesdorf M, Gogolin C 2015 Nat. Phys. 11 124Google Scholar

    [4]

    Moessner R, Sondhi S L 2017 Nat. Phys. 13 424Google Scholar

    [5]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [6]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [7]

    Bloch I, Dalibard J, Nascimbne S 2012 Nat. Phys. 8 267Google Scholar

    [8]

    Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar

    [9]

    Vajna S, Dóra B 2014 Phys. Rev. B 89 161105(RGoogle Scholar

    [10]

    Sharma S, Divakaran U, Polkovnikov A, Dutta A 2016 Phys. Rev. B 93 144306Google Scholar

    [11]

    Cao K Y, Li W W, Zhong M, Tong P Q 2020 Phys. Rev. B 102 014207Google Scholar

    [12]

    Hickey J M, Genway S, Garrahan J P 2014 Phys. Rev. B 89 054301Google Scholar

    [13]

    Bhattacharjee S, Dutta A 2018 Phys. Rev. B 97 134306Google Scholar

    [14]

    Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar

    [15]

    Zache T V, Mueller N, Schneider J T, Jendrzejewski F, Berges J, Hauke P 2019 Phys. Rev. Lett. 122 050403Google Scholar

    [16]

    Ding C X 2020 Phys. Rev. B 102 060409(RGoogle Scholar

    [17]

    Schmitt M, Kehrein S 2015 Phys. Rev. B 92 075114Google Scholar

    [18]

    Heyl M 2014 Phys. Rev. Lett. 113 205701Google Scholar

    [19]

    Karrasch C, Schuricht D 2013 Phys. Rev. B 87 195104Google Scholar

    [20]

    Kriel J N, Karrasch C, Kehrein S 2014 Phys. Rev. B 90 125106Google Scholar

    [21]

    Yin H H, Chen S, Gao X L, Wang P 2018 Phys. Rev. A 97 033624Google Scholar

    [22]

    Yang C, Wang Y, Wang P, Gao X, Chen S 2017 Phys. Rev. B 95 184201Google Scholar

    [23]

    Žunkovič B, Heyl M, Knap M, Silva A 2018 Phys. Rev. Lett. 120 130601Google Scholar

    [24]

    Karrasch C, Schuricht D 2017 Phys. Rev. B 95 075143Google Scholar

    [25]

    Zhou L, Wang Q H, Wang H, Gong J 2018 Phys. Rev. A 98 022129Google Scholar

    [26]

    邓天舒, 易为 2019 物理学报 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

    [27]

    Abdi M 2019 Phys. Rev. B 100 184310Google Scholar

    [28]

    Liu T, Guo H 2019 Phys. Rev. B 99 104307Google Scholar

    [29]

    Abeling N O, Kehrein S 2016 Phys. Rev. B 93 104302Google Scholar

    [30]

    Vajna S, Dóra B 2015 Phys. Rev. B 91 155127Google Scholar

    [31]

    Wang P, Gao X L 2018 Phys. Rev. A 97 023627Google Scholar

    [32]

    Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J, Du J 2019 Phys. Rev. B 100 085308Google Scholar

    [33]

    Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R, Roos C F 2017 Phys. Rev. Lett. 119 080501Google Scholar

    [34]

    Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar

    [35]

    Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P, Blatt R 2016 Nature 534 516Google Scholar

    [36]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [37]

    Nie X, Wei B B, Chen X, Zhang Z, Zhao X, Qiu C, Tian Y, Ji Y, Xin T, Lu D, Li J 2020 Phys. Rev. Lett. 124 250601Google Scholar

    [38]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501Google Scholar

    [39]

    Tia Tn, Yang H X, Qiu L Y, Liang H Y, Yang Y B, Xu Y, Duan L M 2020 Phys. Rev. Lett. 124 043001Google Scholar

    [40]

    Kennes D M, Schuricht D, Karrasch C 2018 Phys. Rev. B 97 184302Google Scholar

    [41]

    cheraghi H, Mahdavifar S 2020 Sci. Rep. 10 4407Google Scholar

    [42]

    Hou X Y, Gao Q C, Guo H, He Y, Liu T, Chien C C 2020 Phys. Rev. B 102 104305Google Scholar

    [43]

    Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar

    [44]

    Lang J, Frank B, Halimeh J C 2018 Phys. Rev. Lett. 121 130603Google Scholar

    [45]

    Hagymási I, Hubig C, Legeza Ö, Schollwöck U 2019 Phys. Rev. Lett. 122 250601Google Scholar

    [46]

    Huang Y P, Banerjee D, Heyl M 2019 Phys. Rev. Lett. 122 250401Google Scholar

    [47]

    Khatun A, Bhattacharjee S M 2019 Phys. Rev. Lett. 123 160603Google Scholar

    [48]

    Zhou B, Yang C, Chen S 2019 Phys. Rev. B 100 184313Google Scholar

    [49]

    Sun G, Wei B B 2020 Phys. Rev. B 102 094302Google Scholar

    [50]

    Wu Y 2020 Phys. Rev. B 101 014305Google Scholar

    [51]

    Divakaran U, Sharma S, Dutta A 2016 Phys. Rev. E 93 052133Google Scholar

    [52]

    Zhang X X, Li F J, Wang K, Xue J, Huo G W, Fang A P, Li H R 2021 Chin. Phys. B 30 090504Google Scholar

    [53]

    Mo H L, Zhang Q L, Wan X 2020 Chin. Phys. Lett. 37 060301Google Scholar

    [54]

    杨超, 陈澍 2019 物理学报 68 220304Google Scholar

    Chen S, Yang C 2019 Acta Phys. Sin. 68 220304Google Scholar

    [55]

    贺志, 余敏, 王琼 2019 物理学 报 68 240506

    He Z, Yu M, Wang Q 2019 Acta Phys. Sin. 68 240506

    [56]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. NY 16 407Google Scholar

  • 图 1  横场中XY链的相图, 其中的点$A, B, \cdots, F$表示典型的参数值所对应的位置

    Figure 1.  Phase diagram of the $XY$ chain in a transverse field. The points $A, B, \cdots, F$ in the phase diagram correspond to the typical parameter values.

    图 2  (a)淬火路径$A\rightarrow B\rightarrow C$对应的临界时间图, 图中两条虚线对应的时刻分别为$T=0.5$$1.0$; (b1) $T=0.5$和(b2)$T=1.0$$t>T$时的Fisher零点分布; (c)两次淬火过程中的率函数, 黑色和红色实线分别对应$T=0.5$$1.0$; (d) $|B_{k}/A_{k}|$k的关系, 黑色和红色实线分别对应$T=0.5$$1.0$

    Figure 2.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $A\rightarrow B\rightarrow C$. The dotted lines mark the times for $T=0.5$ and $1.0$, respectively. (b) The Fisher zeros for $t>T$ with (b1) $T=0.5$ and (b2) $T=1.0$, respectively. (c) The rate functions corresponding to $T=0.5$ and $1.0$, respectively. (d) The relationship between $|B_{k}/A_{k}|$ and k for $T=0.5$ and $1.0$, respectively.

    图 3  (a)淬火路径$C\rightarrow D\rightarrow E$对应的临界时间图, 图中虚线对应的时刻为$T=1.25$; (b) $T=1.25$$t>T$时的Fisher零点分布; (c) $T=1.25$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系, 图中红色和蓝色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔分别为$T=T_{5}\approx1.1574$$T=T_{6}\approx1.3879$

    Figure 3.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $C\rightarrow D\rightarrow E$. The dotted line marks the time for $T=1.25$. (b) The Fisher zeros for $t>T$ with $T=1.25$. (c) The rate function corresponding to $T=1.25$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red and blue lines corresponding to the relationships between $|B_{k}/A_{k}|$ and k for $T=T_{5}\approx1.1574$ and $T=T_{6}\approx1.3879$, respectively.

    图 4  (a)淬火路径$B\rightarrow C\rightarrow D$对应的临界时间图, 图中虚线对应的时刻为$T=1.5$; (b) $T=1.5$$t>T$时的Fisher零点分布; (c) $T=1.5$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系. 红色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔为$T=T_{7}\approx1.5210$

    Figure 4.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $B\rightarrow C\rightarrow D$. The dotted line marks the time for $T=1.5$. (b) The Fisher zeros for $t>T$ with $T=1.5$. (c) The rate function corresponding to $T=1.5$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red line corresponding to the relationship between $|B_{k}/A_{k}|$ and k for $T=T_{7}\approx1.5210$.

    图 5  (a)淬火路径$D\rightarrow C\rightarrow B$对应的临界时间图, 图中虚线对应的时刻为$T=1.5$; (b) $T=1.5$$t>T$ 时的Fisher零点分布; (c) $T=1.5$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系, 其中红色和蓝色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔分别为$T=T_{8}\approx1.1574$$T=T_{9}\approx1.3879$

    Figure 5.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $D\rightarrow C\rightarrow B$. The dotted line marks the time for $T=1.5$. (b) The Fisher zeros for $t>T$ with $T=1.5$. (c) The rate function corresponding to $T=1.5$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red and blue lines corresponding to the relationships between $|B_{k}/A_{k}|$ and k for $T=T_{8}\approx1.1574$ and $T=T_{9}\approx1.3879$, respectively.

    图 6  (a)淬火路径$C\rightarrow B\rightarrow D$对应的临界时间图, 图中虚线对应的时刻为$T=1.5$; (b) $T=1.5$$t>T$ 时的Fisher零点分布; (c) $T=1.5$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系, 其中红色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔为$T=T_{10}\approx0.9170$

    Figure 6.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $C\rightarrow B\rightarrow D$. The dotted line marks the time for $T=1.5$. (b) The Fisher zeros for $t>T$ with $T=1.5$. (c) The rate function corresponding to $T=1.5$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red line corresponding to the relationship between $|B_{k}/A_{k}|$ and k for $T=T_{10}\approx0.9170$.

  • [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [2]

    Dziarmaga J 2010 Adv. Phys. 59 1063Google Scholar

    [3]

    Eisert J, Friesdorf M, Gogolin C 2015 Nat. Phys. 11 124Google Scholar

    [4]

    Moessner R, Sondhi S L 2017 Nat. Phys. 13 424Google Scholar

    [5]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [6]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [7]

    Bloch I, Dalibard J, Nascimbne S 2012 Nat. Phys. 8 267Google Scholar

    [8]

    Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar

    [9]

    Vajna S, Dóra B 2014 Phys. Rev. B 89 161105(RGoogle Scholar

    [10]

    Sharma S, Divakaran U, Polkovnikov A, Dutta A 2016 Phys. Rev. B 93 144306Google Scholar

    [11]

    Cao K Y, Li W W, Zhong M, Tong P Q 2020 Phys. Rev. B 102 014207Google Scholar

    [12]

    Hickey J M, Genway S, Garrahan J P 2014 Phys. Rev. B 89 054301Google Scholar

    [13]

    Bhattacharjee S, Dutta A 2018 Phys. Rev. B 97 134306Google Scholar

    [14]

    Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar

    [15]

    Zache T V, Mueller N, Schneider J T, Jendrzejewski F, Berges J, Hauke P 2019 Phys. Rev. Lett. 122 050403Google Scholar

    [16]

    Ding C X 2020 Phys. Rev. B 102 060409(RGoogle Scholar

    [17]

    Schmitt M, Kehrein S 2015 Phys. Rev. B 92 075114Google Scholar

    [18]

    Heyl M 2014 Phys. Rev. Lett. 113 205701Google Scholar

    [19]

    Karrasch C, Schuricht D 2013 Phys. Rev. B 87 195104Google Scholar

    [20]

    Kriel J N, Karrasch C, Kehrein S 2014 Phys. Rev. B 90 125106Google Scholar

    [21]

    Yin H H, Chen S, Gao X L, Wang P 2018 Phys. Rev. A 97 033624Google Scholar

    [22]

    Yang C, Wang Y, Wang P, Gao X, Chen S 2017 Phys. Rev. B 95 184201Google Scholar

    [23]

    Žunkovič B, Heyl M, Knap M, Silva A 2018 Phys. Rev. Lett. 120 130601Google Scholar

    [24]

    Karrasch C, Schuricht D 2017 Phys. Rev. B 95 075143Google Scholar

    [25]

    Zhou L, Wang Q H, Wang H, Gong J 2018 Phys. Rev. A 98 022129Google Scholar

    [26]

    邓天舒, 易为 2019 物理学报 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

    [27]

    Abdi M 2019 Phys. Rev. B 100 184310Google Scholar

    [28]

    Liu T, Guo H 2019 Phys. Rev. B 99 104307Google Scholar

    [29]

    Abeling N O, Kehrein S 2016 Phys. Rev. B 93 104302Google Scholar

    [30]

    Vajna S, Dóra B 2015 Phys. Rev. B 91 155127Google Scholar

    [31]

    Wang P, Gao X L 2018 Phys. Rev. A 97 023627Google Scholar

    [32]

    Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J, Du J 2019 Phys. Rev. B 100 085308Google Scholar

    [33]

    Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R, Roos C F 2017 Phys. Rev. Lett. 119 080501Google Scholar

    [34]

    Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar

    [35]

    Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P, Blatt R 2016 Nature 534 516Google Scholar

    [36]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [37]

    Nie X, Wei B B, Chen X, Zhang Z, Zhao X, Qiu C, Tian Y, Ji Y, Xin T, Lu D, Li J 2020 Phys. Rev. Lett. 124 250601Google Scholar

    [38]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501Google Scholar

    [39]

    Tia Tn, Yang H X, Qiu L Y, Liang H Y, Yang Y B, Xu Y, Duan L M 2020 Phys. Rev. Lett. 124 043001Google Scholar

    [40]

    Kennes D M, Schuricht D, Karrasch C 2018 Phys. Rev. B 97 184302Google Scholar

    [41]

    cheraghi H, Mahdavifar S 2020 Sci. Rep. 10 4407Google Scholar

    [42]

    Hou X Y, Gao Q C, Guo H, He Y, Liu T, Chien C C 2020 Phys. Rev. B 102 104305Google Scholar

    [43]

    Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar

    [44]

    Lang J, Frank B, Halimeh J C 2018 Phys. Rev. Lett. 121 130603Google Scholar

    [45]

    Hagymási I, Hubig C, Legeza Ö, Schollwöck U 2019 Phys. Rev. Lett. 122 250601Google Scholar

    [46]

    Huang Y P, Banerjee D, Heyl M 2019 Phys. Rev. Lett. 122 250401Google Scholar

    [47]

    Khatun A, Bhattacharjee S M 2019 Phys. Rev. Lett. 123 160603Google Scholar

    [48]

    Zhou B, Yang C, Chen S 2019 Phys. Rev. B 100 184313Google Scholar

    [49]

    Sun G, Wei B B 2020 Phys. Rev. B 102 094302Google Scholar

    [50]

    Wu Y 2020 Phys. Rev. B 101 014305Google Scholar

    [51]

    Divakaran U, Sharma S, Dutta A 2016 Phys. Rev. E 93 052133Google Scholar

    [52]

    Zhang X X, Li F J, Wang K, Xue J, Huo G W, Fang A P, Li H R 2021 Chin. Phys. B 30 090504Google Scholar

    [53]

    Mo H L, Zhang Q L, Wan X 2020 Chin. Phys. Lett. 37 060301Google Scholar

    [54]

    杨超, 陈澍 2019 物理学报 68 220304Google Scholar

    Chen S, Yang C 2019 Acta Phys. Sin. 68 220304Google Scholar

    [55]

    贺志, 余敏, 王琼 2019 物理学 报 68 240506

    He Z, Yu M, Wang Q 2019 Acta Phys. Sin. 68 240506

    [56]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. NY 16 407Google Scholar

  • [1] Cai De-Huan, Qu Su-Ping. Dynamic topological phenomena in periodically driven Raman lattice. Acta Physica Sinica, 2024, 73(14): 140301. doi: 10.7498/aps.73.20240535
    [2] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [3] Xiong Fan, Chen Yong-Cong, Ao Ping. Qubit dynamics driven by dipole field in thermal noise environment. Acta Physica Sinica, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [4] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [5] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [6] From Transverse Field Ising Chain to Quantum E8 Integrable Model. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211836
    [7] Mao Li-Jun, Zhang Yun-Bo. The dynamics of the bipartite and tripartite entanglement in the three-qubit Dicke model. Acta Physica Sinica, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [8] Wen Yong-Li, Zhang Shan-Chao, Yan Hui, Zhu Shi-Liang. Scheme of directly measuring quantum density matrix by δ-quench method. Acta Physica Sinica, 2021, 70(11): 110301. doi: 10.7498/aps.70.20210269
    [9] Wang Xiao, Yang Jia-Hao, Wu Jian-Da. From the transverse field Ising chain to the quantum E8 integrable model. Acta Physica Sinica, 2021, 70(23): 230504. doi: 10.7498/aps.70.20211836
    [10] Deng Tian-Shu, Yi Wei. Fixed points and dynamic topological phenomena in quench dynamics. Acta Physica Sinica, 2019, 68(4): 040303. doi: 10.7498/aps.68.20181928
    [11] Yang Chao, Chen Shu. Topological invariant in quench dynamics. Acta Physica Sinica, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [12] Song Jia-Li, Zhong Ming, Tong Pei-Qing. Quantum phase transitions of one-dimensional period-two anisotropic XY models in a transverse field. Acta Physica Sinica, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [13] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [14] Fan Kai-Ming, Zhang Guo-Feng. The dynamics of quantum correlation between two atoms in a damping Jaynes-Cummings model. Acta Physica Sinica, 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [15] Yan Yuan, Wei Hou. Dynamical entanglement in the model of field interacted with atoms of a nonlinear medium. Acta Physica Sinica, 2013, 62(11): 110301. doi: 10.7498/aps.62.110301
    [16] Hu Chang-Cheng, Ye Hui-Qi, Wang Gang, Liu Bao-Li. Spatiotemporal dynamics of photogenerated carriers in GaAs/AlGaAs multiple quantum wells. Acta Physica Sinica, 2011, 60(1): 017803. doi: 10.7498/aps.60.017803
    [17] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [18] Huang Xian-Shan, Xie Shuang-Yuan, Yang Ya-Ping. The effects of quantum measurement on an excited Λ-type atom in three-dimensional photonic crystal. Acta Physica Sinica, 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [19] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] Ruan Jian-Hong, Xue Xun, Zhu Wei. . Acta Physica Sinica, 2002, 51(6): 1214-1220. doi: 10.7498/aps.51.1214
Metrics
  • Abstract views:  4163
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2021
  • Accepted Date:  16 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 September 2021

/

返回文章
返回