Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental demonstration of three-dimensional high energy electron radiography

Li Shuang-Shuang Zhao Quan-Tang Cao Shu-Chun Ran Zhao-Hui Shen Xiao-Kang Zhao Shu-Jun Zhang Zi-Min

Citation:

Experimental demonstration of three-dimensional high energy electron radiography

Li Shuang-Shuang, Zhao Quan-Tang, Cao Shu-Chun, Ran Zhao-Hui, Shen Xiao-Kang, Zhao Shu-Jun, Zhang Zi-Min
PDF
HTML
Get Citation
  • High energy electron radiography (HEER) proposed first for real-time high spatial and temporal resolution diagnosis of warm dense matter (WDM) and inertial confinement fusion (ICF) has proved experimentally feasible for mesoscale sciences diagnosis. Until now, the spatial resolution of the images close to 1 μm has been reached experimentally which is better than that of X-rays and neutron radiography. However, traditional HEER obtains two-dimensional images which cannot accurately present the three-dimensional structure of the sample. To further improve the capability of HEER to diagnose and obtain the internal information of samples, three-dimensional high energy electron radiography (TDHEER) was put forward by combining HEER with three-dimensional (3D) reconstruction tomography technology. The validity and usage of the TDHEER method have been confirmed through simulation of the fully 3D diagnostic of static mesoscale sample. This paper focuses mainly on the experimental demonstration of the 3D high energy electron radiography. The feasibility of TDHEER is for the first time confirmed by the results achieved with different 3D reconstruction algorithms. The 3D reconstruction algorithms, analytical algorithm-filtered back projection (FBP), iterative algorithms-algebraic reconstruction technique (ART), and simultaneous algebraic reconstruction technique (SART) are used here. In this experiment, the less projected data are used, so it takes the less time to obtain two-dimensional (2D) HEER images and the reconstruction. In order to spend the time as little as possible and obtain the satisfactory quality of reconstruction result, there are three groups of projected image sets, 180, 36 and 18, acquired in our experiment. When all three algorithms are adopted in 180 projected images, the reconstructed images show that all three algorithms FBP, ART and SART are feasible for TDHEER. The different reconstructed slice images of the sample in X-, Y-, and Z- direction clearly show the detailed structure of the sample. The images reconstructed by ART and SART algorithm are equivalent. Comparing with ART and SART, the reconstruction results by FBP can show more details, but there are some artifacts. Because the 36 2D HEER images fail to satisfy the Nyquist sampling theory, the analytic algorithm FBP is not used. Taking the result of FBP reconstructed by 180 images as a standard reference to compare the result of ART with the results of SART, the images reconstructed by the SART algorithm are closer to the original images. Testing 18 images, the results of the ART and SART both have lots of artifacts but the SART algorithm spends less time in reconstruction. As fewer projected images are used, more artifacts are found in the reconstructed images. Therefore, it is advantageous to combine the SART algorithm with 36 HEER projected images, which obtains high-quality reconstruction images and spends less time. The feasibility of TDHEER is confirmed experimentally for the first time and all three dimensions of the sample structures are obtained. Of the three different 3D reconstruction algorithms, the SART algorithm is the most suitable for reconstructing the few-view images. The TDHEER technology will extend HEER’s application fields, especially for mesoscale sciences.
      Corresponding author: Zhao Quan-Tang, zhaoquantang@impcas.ac.cn ; Zhao Shu-Jun, zhaosj@zzu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0404900), the National Natural Science Foundation of China (Grant No. 11875303), and the Key Program of the International Partnership of Bureau of International Cooperation Chinese Academy of Sciences (Grant No. 113462KYSB20160036)
    [1]

    Wei G, Qiu J, Jing C 2014 Pro. SPIE 9211 921104

    [2]

    Zhao Y T, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 34 338Google Scholar

    [3]

    Merrill F, Harmon F, Hunt A, Mariam F, Morley K, Morris C, Saunders A, Schwartz C 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 382Google Scholar

    [4]

    Zhao Q T, Cao S C, Cheng R, Shen X K, Zhang Z M, Zhao Y T, Gai W, Du Y C 2014 Proceedings of the LINAC2014 Geneva, Switzerland, August 31–September 5, 2014 p76

    [5]

    Zhao Q T, Cao S C, Liu M, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 832 144Google Scholar

    [6]

    Zhou Z, Du Y C, Cao S C, et al. 2018 Phys. Rev. Accel. Beams 21 074701Google Scholar

    [7]

    Zhao Q T, Cao S. C, Cheng R, et al. 2018 Laser Part. Beams 36 313Google Scholar

    [8]

    Zhao Q T, Cao S C, Shen X K, Wang Y R, Zong Y, Xiao J H, Zhu Y L, Zhou Y W, Liu M, Cheng R, Zhao Y T, Zhang Z M, Gai W 2017 Laser Part. Beams 35 579Google Scholar

    [9]

    Zhou Z, Fang Y, Chen H, Wu Y P, Du Y C, Yan L X, Tang C X, Huang W H 2019 Phys. Rev. Appl. 11 034068Google Scholar

    [10]

    Maddox B R, Park H S, Remington B A, et al. 2011 Phys. Plasmas 18 168Google Scholar

    [11]

    Park H S, Maddox B R, Giraldez E, et al. 2008 Phys. Plasmas 15 3048Google Scholar

    [12]

    Tian C, Yu M H, Shan L Q, Wu Y C, Zhang T K, Bi B, Zhang F, Zhang Q Q, Liu D X, Wang W W, Yuan Z Q, Yang S Q, Yang L, Zhou W M, Gu Y Q, Zhang B H 2019 Nucl. Fusion 59 046012Google Scholar

    [13]

    Higginson D P, Vassura L, Gugiu M, et al. 2015 Phys. Rev. Lett. 115 054802Google Scholar

    [14]

    Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J 2009 J. Phys. D: Appl. Phys. 42 243001Google Scholar

    [15]

    Merrill F E, Bower D, Buckles R, et al. 2012 Rev. Sci. Instrum. 83 051003Google Scholar

    [16]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [17]

    Zhao Q T, Ma Y Y, Xiao J H, Cao S C, Zhang Z M 2019 Appl. Sci. 9 3764Google Scholar

    [18]

    谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王锋, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第5−16页

    Xie Y G, Cheng C, Wang M, Lv J G, Meng X G, Wang F, Gu S D, Guo Y N 2003 Particle Detector and Data Acquisition (Beijing: Science Press) pp5−16 (in Chinese)

    [19]

    Padole A, Khawaja Rd Ali, Kalra M K, Singh S 2015 Am. J. Roentgenol. 204 384Google Scholar

    [20]

    Chen B X, Yang M, Zhang Z, Bian J G, Han X, Sidky E, Pan X C 2014 Biochim. Biophys. Acta 1581 1856Google Scholar

    [21]

    Schofield R, King L, Tayal U, Castellano I, Stirrup J, Pontana F, Earls J, Nicol E 2020 J. Cardiovasc Comput Tomogr. 14 219Google Scholar

    [22]

    Gordon R, Bender R, Herman G T 1970 J. Theor. Biol. 29 471Google Scholar

    [23]

    Trampert J, Leveque J J 1990 J. Geophys. Res. B:Solid Earth 95 12553Google Scholar

    [24]

    Zhu Y L, Yuan P, Cao S C, et al. 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 911 74Google Scholar

    [25]

    Blackledget J M 2006 Digital Signal Processing (2nd Ed.) (Cambridge: Woodhead Press) pp522−540

    [26]

    拉斐尔C, 理查E, 史蒂文L 著 (阮秋琦 译) 2014 数字图像处理(MATLAB版) (第二版) (北京: 电子工业出版社) 第45−48页

    Rafael C, Richard E, Steven L (translated by Ruan Q Q) 2014 Digital Image Processing Using MATLAB (2nd Ed.) (Beijing: Electronics Industry Press) pp45−48 (in Chinese)

    [27]

    Vetterli M, Herley C 1992 IEEE Trans. Acoust., Speech, Signal Process 40 2207Google Scholar

    [28]

    Zhang Y, Zhang W H, Lei Y J, Zhou J L 2014 J. Opt. Soc. Am. A 31 981Google Scholar

    [29]

    Soleimani M., Pengpen T 2015 Philos Trans. R. Dov. London, Ser. A 373 20140399Google Scholar

    [30]

    Sidky E Y, Kao C M, Pan X C 2009 J. X-Ray Sci. Technol. 14 119Google Scholar

    [31]

    Liu Y, Ma J H, Fan Y, Liang Z R 2012 Phys. Med. Biol. 57 7923Google Scholar

    [32]

    Deng L Z, Mi D L, He P, Feng P, Yu P W, Chen M Y, Li Z C, Wang J, Wei B 2015 Bio-med. Mater. Eng. 26 1685Google Scholar

  • 图 1  HEER的布局原理图

    Figure 1.  Layout and principle of HEER.

    图 2  获取2D HEER数据的实验原理

    Figure 2.  Experimental principle of acquiring 2D HEER data.

    图 3  实验样品 (a) 正视图; (b) 左视图; (c) 3D坐标系

    Figure 3.  Experimental sample: (a) The front view; (b) the left view; (c) the 3D coordinate diagram.

    图 4  2D HEER图像 (a)−(d) 旋转角度分别为0º, 45º, 135º和 180º

    Figure 4.  2D HEER images: (a)−(d) Rotation angle is 0º, 45º, 135º, 180º, respectively.

    图 5  X–到X+在第95, 134和145层使用不同算法重建的切片的结果 (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART

    Figure 5.  Results of reconstructed slices with different algorithms, at the 95th, 134th and 145th layers from X– to X+: (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART.

    图 6  Y–到Y+的第89, 124和150层使用不同算法重建的切片的结果 (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART

    Figure 6.  Results of reconstructed slices with different algorithms, at the 89th, 124th and 150th layers from Y– to Y+: (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART.

    图 7  Z–到Z+在第52, 122和155层使用不同算法重建的切片的结果 (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART

    Figure 7.  Results of reconstructed slices with different algorithms, at the 52nd, 122th and 155th layers from Z– to Z+: (a)−(c) FBP; (d)−(f) ART; (g)−(i) SART.

    图 8  (a) FBP重建的从Y–到Y +第124个切片图像; (b) 是(a)中红线的像素灰度分布图

    Figure 8.  (a) The 124th slice image from Y– to Y+ reconstructed by FBP; (b) the pixels grayscale of the red line of panel (a).

    图 9  Y–到Y+的第100层和第127层使用不同的算法得出的结果 (a), (b) ART; (c), (d) SART

    Figure 9.  Reconstructed slices results with different algorithms, at the 100th and 127th layers from Y– to Y+: (a), (b) ART; (c), (d) SART.

    图 10  Y–到Y +在第127层重建切片的结果 (a) ART; (b) SART; (c) 是(b)中红线的像素灰度分布

    Figure 10.  Results of reconstructed slices at the 127th layer from Y– to Y+: (a) ART; (b) SART; (c) the pixels grayscale of the red line of panel (b).

    表 1  ART, SART重建切片的dr

    Table 1.  Value of d and r of the image reconstructed by ART and SART.

    切片位置重建算法dr
    Y 100thART11.07360.8820
    SART10.90600.8672
    Y 127thART9.09470.9076
    SART8.95200.8933
    DownLoad: CSV
  • [1]

    Wei G, Qiu J, Jing C 2014 Pro. SPIE 9211 921104

    [2]

    Zhao Y T, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 34 338Google Scholar

    [3]

    Merrill F, Harmon F, Hunt A, Mariam F, Morley K, Morris C, Saunders A, Schwartz C 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 382Google Scholar

    [4]

    Zhao Q T, Cao S C, Cheng R, Shen X K, Zhang Z M, Zhao Y T, Gai W, Du Y C 2014 Proceedings of the LINAC2014 Geneva, Switzerland, August 31–September 5, 2014 p76

    [5]

    Zhao Q T, Cao S C, Liu M, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 832 144Google Scholar

    [6]

    Zhou Z, Du Y C, Cao S C, et al. 2018 Phys. Rev. Accel. Beams 21 074701Google Scholar

    [7]

    Zhao Q T, Cao S. C, Cheng R, et al. 2018 Laser Part. Beams 36 313Google Scholar

    [8]

    Zhao Q T, Cao S C, Shen X K, Wang Y R, Zong Y, Xiao J H, Zhu Y L, Zhou Y W, Liu M, Cheng R, Zhao Y T, Zhang Z M, Gai W 2017 Laser Part. Beams 35 579Google Scholar

    [9]

    Zhou Z, Fang Y, Chen H, Wu Y P, Du Y C, Yan L X, Tang C X, Huang W H 2019 Phys. Rev. Appl. 11 034068Google Scholar

    [10]

    Maddox B R, Park H S, Remington B A, et al. 2011 Phys. Plasmas 18 168Google Scholar

    [11]

    Park H S, Maddox B R, Giraldez E, et al. 2008 Phys. Plasmas 15 3048Google Scholar

    [12]

    Tian C, Yu M H, Shan L Q, Wu Y C, Zhang T K, Bi B, Zhang F, Zhang Q Q, Liu D X, Wang W W, Yuan Z Q, Yang S Q, Yang L, Zhou W M, Gu Y Q, Zhang B H 2019 Nucl. Fusion 59 046012Google Scholar

    [13]

    Higginson D P, Vassura L, Gugiu M, et al. 2015 Phys. Rev. Lett. 115 054802Google Scholar

    [14]

    Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J 2009 J. Phys. D: Appl. Phys. 42 243001Google Scholar

    [15]

    Merrill F E, Bower D, Buckles R, et al. 2012 Rev. Sci. Instrum. 83 051003Google Scholar

    [16]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [17]

    Zhao Q T, Ma Y Y, Xiao J H, Cao S C, Zhang Z M 2019 Appl. Sci. 9 3764Google Scholar

    [18]

    谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王锋, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第5−16页

    Xie Y G, Cheng C, Wang M, Lv J G, Meng X G, Wang F, Gu S D, Guo Y N 2003 Particle Detector and Data Acquisition (Beijing: Science Press) pp5−16 (in Chinese)

    [19]

    Padole A, Khawaja Rd Ali, Kalra M K, Singh S 2015 Am. J. Roentgenol. 204 384Google Scholar

    [20]

    Chen B X, Yang M, Zhang Z, Bian J G, Han X, Sidky E, Pan X C 2014 Biochim. Biophys. Acta 1581 1856Google Scholar

    [21]

    Schofield R, King L, Tayal U, Castellano I, Stirrup J, Pontana F, Earls J, Nicol E 2020 J. Cardiovasc Comput Tomogr. 14 219Google Scholar

    [22]

    Gordon R, Bender R, Herman G T 1970 J. Theor. Biol. 29 471Google Scholar

    [23]

    Trampert J, Leveque J J 1990 J. Geophys. Res. B:Solid Earth 95 12553Google Scholar

    [24]

    Zhu Y L, Yuan P, Cao S C, et al. 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 911 74Google Scholar

    [25]

    Blackledget J M 2006 Digital Signal Processing (2nd Ed.) (Cambridge: Woodhead Press) pp522−540

    [26]

    拉斐尔C, 理查E, 史蒂文L 著 (阮秋琦 译) 2014 数字图像处理(MATLAB版) (第二版) (北京: 电子工业出版社) 第45−48页

    Rafael C, Richard E, Steven L (translated by Ruan Q Q) 2014 Digital Image Processing Using MATLAB (2nd Ed.) (Beijing: Electronics Industry Press) pp45−48 (in Chinese)

    [27]

    Vetterli M, Herley C 1992 IEEE Trans. Acoust., Speech, Signal Process 40 2207Google Scholar

    [28]

    Zhang Y, Zhang W H, Lei Y J, Zhou J L 2014 J. Opt. Soc. Am. A 31 981Google Scholar

    [29]

    Soleimani M., Pengpen T 2015 Philos Trans. R. Dov. London, Ser. A 373 20140399Google Scholar

    [30]

    Sidky E Y, Kao C M, Pan X C 2009 J. X-Ray Sci. Technol. 14 119Google Scholar

    [31]

    Liu Y, Ma J H, Fan Y, Liang Z R 2012 Phys. Med. Biol. 57 7923Google Scholar

    [32]

    Deng L Z, Mi D L, He P, Feng P, Yu P W, Chen M Y, Li Z C, Wang J, Wei B 2015 Bio-med. Mater. Eng. 26 1685Google Scholar

  • [1] Fu Ya-Peng, Sun Qian-Dong, Li Bo-Yi, Ta De-An, Xu Kai-Liang. Three-dimensional ultrafast ultrasound imaging of blood flow using row-column addressing array: A simulation study. Acta Physica Sinica, 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [2] Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie. Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating. Acta Physica Sinica, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [4] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [5] Dai Bing, Wang Peng, Zhou Yu, You Cheng-Wu, Hu Jiang-Sheng, Yang Zhen-Gang, Wang Ke-Jia, Liu Jin-Song. Wavelet transform in the application of three-dimensional terahertz imaging for internal defect detection. Acta Physica Sinica, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [6] Pan An, Zhang Xiao-Fei, Wang Bin, Zhao Qing, Shi Yi-Shi. Experimental study on three-dimensional ptychography for thick sample. Acta Physica Sinica, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [7] Zhang Hui, Yang Yang, Li Zhi-Qing. Electron-electron scattering in three-dimensional amorphous IGZO films. Acta Physica Sinica, 2016, 65(16): 167301. doi: 10.7498/aps.65.167301
    [8] Zhang Yu, Tang Zhi-Lie, Wu Yong-Bo, Shu Gang. Three-dimensional photoacoustic imaging technique based on acoustic lens. Acta Physica Sinica, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [9] Chen He, Yu Bin, Chen Dan-Ni, Li Heng, Niu Han-Ben. Super-diffraction imaging in three-dimensional localization precision of the double-helix point spread function. Acta Physica Sinica, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [10] Wang Fang, Zhao Xing, Yang Yong, Fang Zhi-Liang, Yuan Xiao-Cong. Comparison of the resolutions of integral imaging three-dimensional display based on human vision. Acta Physica Sinica, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [11] Yang Chao, Liu Da-Gang, Liu La-Qun, Xia Meng-Zhong, Wang Hui-Hui, Wang Xiao-Ming. 3D simulation of the electron energy distribution in negative hydrogen ion source. Acta Physica Sinica, 2012, 61(15): 155205. doi: 10.7498/aps.61.155205
    [12] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [13] Liu Guang-Dong, Zhang Ye-Rong. Three-dimensional microwave-induced thermo-acousticimaging for breast cancer detection. Acta Physica Sinica, 2011, 60(7): 074303. doi: 10.7498/aps.60.074303
    [14] Peng Kai, Liu Da-Gang, Liao Chen, Liu Sheng-Gang. Numerical simulation and study of electron cyclotron maser. Acta Physica Sinica, 2011, 60(9): 091301. doi: 10.7498/aps.60.091301
    [15] Liu Yun-Quan, Zhang Jie, Wu Hui-Chun, Sheng Zheng-Ming. Three dimensional pondermotive scattering of ultrashort electron beam in the field of focused ultraintense laser pulse. Acta Physica Sinica, 2006, 55(3): 1176-1180. doi: 10.7498/aps.55.1176
    [16] Wang Shao-Hong, B.Ferguson, Zhang Cun-Lin, Zhang Xi-Cheng. Terahertz computer tomography. Acta Physica Sinica, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
    [17] XIANG JI-YING, WU ZHEN, ZENG SHAO-QUN, LUO QING-MING, ZHANG PING, HUANG DE-XIU. ANALYSIS OF 3D TRANSFER FUNCTIONS OF OPTICAL COHERENCE TOMOGRAPHY. Acta Physica Sinica, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
    [18] XIE WEN-FANG. THREE-ELECTRON SYSTEMS OF THREE-DIMENSIONAL QUANTUM DOTS. Acta Physica Sinica, 1997, 46(3): 563-567. doi: 10.7498/aps.46.563
    [19] WANG XIAO, CAI JIAN-HUA. PLASMON THEORY OF THREE-DIMENSIONAL TIGHT-BINDING ELECTRON GAS. Acta Physica Sinica, 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [20] Zhang Shi-chang, Wang Wen-yao. LINEAR AND NONLINEAR CALCULATIONS OF THE 3-DIMENSIONAL MOTION OF RELATIVISTIC ELECTRONS IN THE ELECTROMAGNETIC WIGGLER AND AXIAL GUIDE FIELD. Acta Physica Sinica, 1991, 40(5): 748-755. doi: 10.7498/aps.40.748
Metrics
  • Abstract views:  4734
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2021
  • Accepted Date:  06 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回