Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel one-dimensional optomechanical crystal nanobeam with high optomechanical coupling rate under different defect states

Xu Qi Sun Xiao-Wei Song Ting Wen Xiao-Dong Liu Xi-Xuan Wang Yi-Wen Liu Zi-Jiang

Citation:

Novel one-dimensional optomechanical crystal nanobeam with high optomechanical coupling rate under different defect states

Xu Qi, Sun Xiao-Wei, Song Ting, Wen Xiao-Dong, Liu Xi-Xuan, Wang Yi-Wen, Liu Zi-Jiang
PDF
HTML
Get Citation
  • Optomechanical crystals can simultaneously modulate elastic waves and electromagnetic waves as well as localizing phonons and photons to enhance the acousto-optic interaction. In this work, a new type of optomechanical crystal nanobeam cavity is designed by periodically arranging the unit cells with double holes on both sides of a hexagonal prism. Considering the moving boundary effect and the photoelastic effect as well as using the first-order electromagnetic perturbation theory and the optomechanical coupling coefficient calculation method, the optomechanical coupling rate of the structure is calculated. The result shows that the overlap between the optical mode and the mechanical mode can be improved by changing the number of defects and optimizing the geometric structure. For the nanobeam cavity structures with different numbers of the like defects, the number of defects will only affect the action mode of the moving boundary effect and photoelastic effect in the optomechanical coupling rate, but will not change the coupling rate too much. In particular, the optomechanical coupling rate of the single defect optomechanical crystal nanobeam cavity can reach –1.29 MHz, and the equivalent mass is 42.6 fg. Moreover, the designed structure is simple and easy to process and fabricate. The coupling rate of even-symmetric optomechanical crystal nanobeam cavity based on gradient defect can reach 2.25 MHz, and the coupling rate of odd symmetric structure can reach 2.18 MHz, in which the moving boundary effect is dominant. Based on the symmetry analysis of the vibration modes of the optomechanical crystal nanobeam cavity with gradient defects, it is worth noting that only the even symmetrical vibration modes of x-y, x-z and y-z can strongly couple with the optical modes. The surface density of the moving boundary effect is calculated and analyzed, and it is found that the surface density of the acoustic resonance mode with high symmetry also possesses high symmetry. However, when the surface density of the moving boundary effect in the defect state appears adjacent to each other and cancels out each other, it will destroy the coupling mode of the moving boundary effect and reduce the coupling rate, whether the symmetry is high or low. In addition, the designed optomechanical crystal nanobeam can also improve the quality factor of the resonant cavity by optimizing the defect structure while maintaining a high optomechanical coupling rate. Therefore, this research provides an effective means to find a structure with high optomechanical coupling rate, and also presents the ideas for designing the space sensors.
      Corresponding author: Sun Xiao-Wei, sunxw_lzjtu@yeah.net
    • Funds: Project supported by the Industrial Support and Guidance Project of Universities in Gansu Province, China (Grant No. 2021CYZC-07), the Key Talent Foundation of Gansu Province, China (Grant No. 2020RCXM100), the Natural Science Foundation of Gansu Province(Grant Nos. 20JR5RA427, 20JR5RA211), the Higher Education Innovation Fund Project of Gansu Province(Grant No. 2020A-039), and the Lanzhou Science and Technology Planning Program, China (Grant No. 2021-1-140).
    [1]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [2]

    张若羽, 李培丽 2021 物理学报 70 054208Google Scholar

    Zhang R Y, Li P L 2021 Acta Phys. Sin. 70 054208Google Scholar

    [3]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [4]

    Pennec Y, Laude V, Papanikolaou N, Djafari-Rouhani B, Oudich M, El Jallal S, Beugnot J C, Escalante J M, Martínez A 2014 Nanophotonics 3 413Google Scholar

    [5]

    Maldovan M, Thomas E L 2006 Appl. Phys. Lett. 88 251907Google Scholar

    [6]

    Moradi P, Bahrami A 2018 J. Appl. Phys. 123 115113Google Scholar

    [7]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [8]

    Li H, Liu W, Yu T, Wang T, Liao Q 2020 Phys. Lett. A 384 126499Google Scholar

    [9]

    Shu Y, Yu M, Yu T, Liu W, Wang T, Liao Q 2020 Opt. Express 28 24813Google Scholar

    [10]

    Shaban S M, Mehaney A, Aly A H 2020 Appl. Optics 59 3878Google Scholar

    [11]

    Lucklum R, Zubtsov M, Oseev A 2013 Anal. Bioanal. Chem. 405 6497Google Scholar

    [12]

    Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar

    [13]

    Eichenfield M, Chan J, Camacho R M, Vahala K J, Painter O 2009 Nature 462 78Google Scholar

    [14]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Chan J, Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [17]

    Safavi-Naeini A H, Van Thourhout D, Baets R, van Laer R 2019 Optica 6 213Google Scholar

    [18]

    Liu Q, Lu H, Bibbó L, Wang Q, Lin M, Tao K, Albin S, Ouyang Z 2020 Appl. Nanosci. 10 1395Google Scholar

    [19]

    Ramp H, Clark T, Hauer B, Doolin C, Balram KC, Srinivasan K, Davis J 2020 Appl. Phys. Lett. 116 174005Google Scholar

    [20]

    Ren H, Matheny M H, MacCabe G S, Luo J, Pfeifer H, Mirhosseini M, Painter O 2020 Nat. Commun. 11 3373Google Scholar

    [21]

    Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik J C, Lévêque G, Djafari-Rouhani B 2012 Appl. Phys. Lett. 101 061109Google Scholar

    [22]

    Chan J, Safavi-Naeini AH, Hill J T, Meenehan S, Painter O 2012 Appl. Phys. Lett. 101 081115Google Scholar

    [23]

    Gomis-Bresco J, Navarro-Urrios D, Oudich M, El-Jallal S, Griol A, Puerto D, Chavez E, Pennec Y, Djafari-Rouhani B, Alzina F, Martinez A, Torres C M 2014 Nat. Commun. 5 4452Google Scholar

    [24]

    Oudich M, El-Jallal S, Pennec Y, Djafari-Rouhani B, Gomis-Bresco J, Navarro-Urrios D, Sotomayor Torres C M, Martínez A, Makhoute A 2014 Phys. Rev. B 89 245122Google Scholar

    [25]

    Li Y, Cui K, Feng X, Huang Y, Huang Z, Liu F, Zhang W 2015 Journal of Optics 17 045001Google Scholar

    [26]

    Chiu C C, Chen W M, Sung K W, Hsiao F L 2017 Opt. Express 25 6076Google Scholar

    [27]

    Lin T R, Chang C C, Hsu J C 2019 J. Appl. Phys. 126 064901Google Scholar

    [28]

    Huang N N, Chung Y C, Chiu H T, Hsu J C, Lin Y F, Kuo C T, Chang Y W, Chen C Y, Lin T R 2020 Crystals 10 421Google Scholar

    [29]

    Pennec Y, Rouhani B D, Li C, Escalante J M, Martinez A, Benchabane S, Laude V, Papanikolaou N 2011 AIP Adv. 1 041901Google Scholar

    [30]

    Hsu J C, Lu T Y, Lin T R 2015 Opt. Express 23 25814Google Scholar

    [31]

    Aram M, Khorasani S 2017 Appl. Phys. B-Lasers O. 123 218Google Scholar

    [32]

    Johnson S G, Ibanescu M, Skorobogatiy M A, Weisberg O, Joannopoulos J D, Fink Y 2002 Phys. Rev. E 65 066611Google Scholar

    [33]

    Eichenfield M, Chan J, Safavi-Naeini AH, Vahala KJ, Painter O 2009 Opt. Express 17 20078Google Scholar

  • 图 1  所设计的一维六角双孔型光力晶体纳米梁谐振腔: (a)谐振腔结构; (b)光力晶体单胞; (c)不同缺陷数量谐振腔; (d)偶对称型梯度谐振腔; (e)奇对称型梯度谐振腔

    Figure 1.  The model structures of the one-dimensional hexagonal double-hole type optomechanical crystal nanobeam cavity designed in the present work, where (a) is nanobeam cavity structure, (b) is optomechanical crystal unit cell, (c) represents the cavity with different number of defects, and (d) and (e) are the even-symmetric and odd-symmetric gradient nanobeam cavity, respectively.

    图 2  六角双孔型光力晶体能带结构: (a)声子能带结构; (b)光子能带结构; (c)声子带隙随内孔半径的改变; (d)光子带隙随内孔半径的改变; (e)无缺陷纳米梁与奇对称型谐振腔声透射谱; (f)无缺陷纳米梁与偶对称型谐振腔声透射谱

    Figure 2.  The band structures of hexagonal double-hole type optomechanical crystal, where (a) and (b) represent the phononic and photonic band structure, respectively, (c) and (d) correspond to the change of the phononic and photonic band gap with the radius of the inner hole, and (e) and (f) are different defects acoustic transmission spectrum of optomechanical crystal nanobeam cavity.

    图 3  (a)−(f)不同缺陷数量光力晶体谐振腔的电场和位移场模态图; (g)不同缺陷数量谐振腔的光力耦合率

    Figure 3.  The electric field and displacement field modes of optomechanical crystal cavities with different defect numbers are shown in (a) (f), and (g) is optomechanical coupling rates of nanobeam cavities with different numbers of defects.

    图 4  具有不同圆角半径的两缺陷光力晶体纳米梁及其光力耦合率

    Figure 4.  Two-defect optomechanical crystal cavities with different fillet radii and its optomechanical coupling rates.

    图 5  几何优化谐振腔的声子能带结构: (a)偶对称谐振腔的声子能带结构, A1-L1为带隙内产生的声子缺陷模; (b)奇对称谐振腔的声子能带结构, A2-N2为带隙内产生的声子缺陷模

    Figure 5.  Phononic band structures of the geometrically optimized nanobeam cavities, where (a) is phononic band structure of the even symmetric cavity, in which A1-L1 are the defect modes generated in phononic band gap, and (b) is phononic band structure of the odd symmetric cavity, in which A2-N2 are the defect modes generated in phononic band gap.

    图 6  几何优化偶对称谐振腔的电场和位移场模态及其光力耦合率: (a)谐振腔的位移场模态图A1-L1与电场模态图P1; (b)光力耦合率及其分量gmbgpe

    Figure 6.  Geometrically optimize the electric field and displacement field modes of the even symmetric nanobeam cavity and optomechanical coupling rates, where (a) represents displacement field mode diagram A1-L1 and electric field mode diagram P1 of the nanobeam cavity, and (b) is optomechanical coupling rates of nanobeam cavities and its components gmb and gpe.

    图 7  几何优化奇对称谐振腔的电场和位移场模态及其光力耦合率: (a)奇数谐振腔的位移场模态图A2-N2与电场模态图P2; (b)光力耦合率及其分量gmbgpe

    Figure 7.  Geometrically optimize the electric field and displacement field modes of the odd symmetric nanobeam cavity and optomechanical coupling rates, where (a) represents displacement field mode diagram A2-N2 and electric field mode diagram P2 of the nanobeam cavity, and (b) is optomechanical coupling rates of nanobeam cavity and its components gmb and gpe.

    图 8  偶对称型纳米梁谐振腔不同谐振频率下声子腔模${\zeta _{{\text{mb}}}}$的分布图

    Figure 8.  The distribution diagram of the phononic cavity modes ${\zeta _{{\text{mb}}}}$ at different resonant frequencies of the even-symmetric nanobeam cavity.

    图 9  新型梯度腔光力晶体梁及其声学模态和光学模态

    Figure 9.  A new gradient cavity optomechanical crystal nanobeam and its acoustic and optical modes.

    表 1  偶对称型谐振腔声学共振模式与光学模式的耦合率

    Table 1.  Optomechanical coupling rates of even symmetric nanobeam cavity

    A1B1C1D1E1F1
    gmb / Hz–1.076×105–1.805×1066.721×105–8.925×104–1.204×1053.790×105
    gpe / Hz1.130×1046.104×104–1.888×1036.130×1029.662×1037.078×104
    g0 / Hz–9.626×104–1.744×1066.532×105–8.864×104–1.108×1054.498×105
    meff / 10–17 kg2.4294.0721.6571.7196.8164.698
    G1H1I1J1K1L1
    gmb / Hz–1.987×106–9.336×103–1.745×1041.102×1051.028×106–2.258×103
    gpe / Hz–2.661×105–1.470×103–6.952×1031.425×1033.462×1057.341×103
    g0 / Hz–2.253×106–1.081×104–2.440×1041.116×1051.374×1065.083×103
    meff / 10–17 kg7.0862.8792.9493.3208.1153.701
    DownLoad: CSV

    表 2  奇对称型谐振腔声学共振模式与光学模式的耦合率

    Table 2.  Optomechanical coupling rates of odd symmetric nanobeam cavity

    A2B2C2D2E2F2G2
    gmb/Hz–2.100×1065.629×1047.079×1032.795×1049.599×1048.016×1043.082×104
    gpe/Hz–7.580×1044.084×1032.762×103–8.579×103–1.062×105–4.091×1035.240×103
    g0/Hz–2.176×1066.037×1049.840×1031.937×104–1.024×1047.607×104–3.606×104
    meff /10–17 kg3.280.9911.053.652.791.410.110
    H2I2J2K2L2M2N2
    gmb/Hz–5.600×1051.818×1036.875×102–1.391×103–1.240×1041.401×1041.311×104
    gpe/Hz1.833×105–2.254×1031.972×103–3.701×1022.550×102–8.942×1039.903×102
    g0/Hz–3.767×105–4.357×1022.659×103–1.761×1031.266×1045.066×1031.410×104
    meff /10–17 kg9.161.961.890.2960.2330.2870.260
    DownLoad: CSV

    表 3  新型梯度腔光力晶体梁的光力耦合率

    Table 3.  Optomechanical coupling rates of a new gradient cavity optomechanical crystal nanobeam.

    f/GHzgmb/Hzgpe/Hzg0/Hzmeff /kg
    7.545–1.093×105–2.076×106–2.185×1067.383×10–17
    DownLoad: CSV
  • [1]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [2]

    张若羽, 李培丽 2021 物理学报 70 054208Google Scholar

    Zhang R Y, Li P L 2021 Acta Phys. Sin. 70 054208Google Scholar

    [3]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [4]

    Pennec Y, Laude V, Papanikolaou N, Djafari-Rouhani B, Oudich M, El Jallal S, Beugnot J C, Escalante J M, Martínez A 2014 Nanophotonics 3 413Google Scholar

    [5]

    Maldovan M, Thomas E L 2006 Appl. Phys. Lett. 88 251907Google Scholar

    [6]

    Moradi P, Bahrami A 2018 J. Appl. Phys. 123 115113Google Scholar

    [7]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [8]

    Li H, Liu W, Yu T, Wang T, Liao Q 2020 Phys. Lett. A 384 126499Google Scholar

    [9]

    Shu Y, Yu M, Yu T, Liu W, Wang T, Liao Q 2020 Opt. Express 28 24813Google Scholar

    [10]

    Shaban S M, Mehaney A, Aly A H 2020 Appl. Optics 59 3878Google Scholar

    [11]

    Lucklum R, Zubtsov M, Oseev A 2013 Anal. Bioanal. Chem. 405 6497Google Scholar

    [12]

    Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar

    [13]

    Eichenfield M, Chan J, Camacho R M, Vahala K J, Painter O 2009 Nature 462 78Google Scholar

    [14]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Chan J, Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [17]

    Safavi-Naeini A H, Van Thourhout D, Baets R, van Laer R 2019 Optica 6 213Google Scholar

    [18]

    Liu Q, Lu H, Bibbó L, Wang Q, Lin M, Tao K, Albin S, Ouyang Z 2020 Appl. Nanosci. 10 1395Google Scholar

    [19]

    Ramp H, Clark T, Hauer B, Doolin C, Balram KC, Srinivasan K, Davis J 2020 Appl. Phys. Lett. 116 174005Google Scholar

    [20]

    Ren H, Matheny M H, MacCabe G S, Luo J, Pfeifer H, Mirhosseini M, Painter O 2020 Nat. Commun. 11 3373Google Scholar

    [21]

    Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik J C, Lévêque G, Djafari-Rouhani B 2012 Appl. Phys. Lett. 101 061109Google Scholar

    [22]

    Chan J, Safavi-Naeini AH, Hill J T, Meenehan S, Painter O 2012 Appl. Phys. Lett. 101 081115Google Scholar

    [23]

    Gomis-Bresco J, Navarro-Urrios D, Oudich M, El-Jallal S, Griol A, Puerto D, Chavez E, Pennec Y, Djafari-Rouhani B, Alzina F, Martinez A, Torres C M 2014 Nat. Commun. 5 4452Google Scholar

    [24]

    Oudich M, El-Jallal S, Pennec Y, Djafari-Rouhani B, Gomis-Bresco J, Navarro-Urrios D, Sotomayor Torres C M, Martínez A, Makhoute A 2014 Phys. Rev. B 89 245122Google Scholar

    [25]

    Li Y, Cui K, Feng X, Huang Y, Huang Z, Liu F, Zhang W 2015 Journal of Optics 17 045001Google Scholar

    [26]

    Chiu C C, Chen W M, Sung K W, Hsiao F L 2017 Opt. Express 25 6076Google Scholar

    [27]

    Lin T R, Chang C C, Hsu J C 2019 J. Appl. Phys. 126 064901Google Scholar

    [28]

    Huang N N, Chung Y C, Chiu H T, Hsu J C, Lin Y F, Kuo C T, Chang Y W, Chen C Y, Lin T R 2020 Crystals 10 421Google Scholar

    [29]

    Pennec Y, Rouhani B D, Li C, Escalante J M, Martinez A, Benchabane S, Laude V, Papanikolaou N 2011 AIP Adv. 1 041901Google Scholar

    [30]

    Hsu J C, Lu T Y, Lin T R 2015 Opt. Express 23 25814Google Scholar

    [31]

    Aram M, Khorasani S 2017 Appl. Phys. B-Lasers O. 123 218Google Scholar

    [32]

    Johnson S G, Ibanescu M, Skorobogatiy M A, Weisberg O, Joannopoulos J D, Fink Y 2002 Phys. Rev. E 65 066611Google Scholar

    [33]

    Eichenfield M, Chan J, Safavi-Naeini AH, Vahala KJ, Painter O 2009 Opt. Express 17 20078Google Scholar

  • [1] Liu Hai-Yang, Fan Xiao-Yue, Fan Hao-Jie, Li Yang-Yang, Tang Tian-Hong, Wang Gang. Influence of defects induced by plasma-bombarded monolayer WS2 on optical properties of bound excitons. Acta Physica Sinica, 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [2] Cao Ming-Peng, Wu Xiao-Peng, Guan Hong-Shan, Shan Guang-Bao, Zhou Bin, Yang Li-Hong, Yang Yin-Tang. Electrothermal coupling analysis of three-dimensional integrated microsystem based on dual cell method. Acta Physica Sinica, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [3] Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [4] Zhao Yun-Jin, Tian Meng, Huang Yong-Gang, Wang Xiao-Yun, Yang Hong, Mi Xian-Wu. Renormalization of photon dyadic Green function by finite element method and its applications in the study of spontaneous emission rate and energy level shift. Acta Physica Sinica, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [5] Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei. Extraction of density of localized states in indium zinc oxide thin film transistor. Acta Physica Sinica, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [6] Yu Ge, Han Qi-Gang, Li Ming-Zhe, Jia Xiao-Peng, Ma Hong-An, Li Yue-Fen. Finite element analysis of the high-pressure tungsten carbide radius-anvil. Acta Physica Sinica, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [7] Zhao Xing-Tao, Liu Xiao-Xu, Zheng Yi, Han Ying, Zhou Gui-Yao, Li Shu-Guang, Hou Lan-Tian. Study of photonic crystal fiber with an air core. Acta Physica Sinica, 2012, 61(21): 214210. doi: 10.7498/aps.61.214210
    [8] Xia Chang-Ming, Zhou Gui-Yao, Han Ying, Liu Zhao-Lun, Hou Lan-Tian. Investigation of V-type photonic crystal fiber with high birefringence. Acta Physica Sinica, 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [9] Qi Yue-Feng, Qiao Han-Ping, Bi Wei-Hong, Liu Yan-Yan. Heat transfer characteristics in fabrication of heat method in photonic crystal fiber grating. Acta Physica Sinica, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [10] Yue Lei-Lei, Chen Yu, Fan Guang-Hui, He Jiao, Zhao De-Xun, Liu Ying-Kai. Influence of defect states on band gaps of the 4340 steel in epoxy in two-dimensional phononic crystal. Acta Physica Sinica, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [11] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [12] Han Qi-Gang, Ma Hong-An, Xiao Hong-Yu, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu, Jia Xiao-Peng. Finite element method study on the temperature distribution in the cell of large single crystal diamond. Acta Physica Sinica, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [13] Zhao Yan, Shi Wei-Hua, Jiang Yue-Jin. Effect of defects outside the centre on dispersive properties of photonic band gap guiding photonic crystal fibers. Acta Physica Sinica, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [14] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [16] Song Xiao-Lu, Guo Zhen, Li Bing-Bin, Wang Shi-Yu, Cai De-Fang, Wen Jian-Guo. Time-varying thermal effect of laser crystal in pulsed diode laser side-pumped Nd∶YAG laser. Acta Physica Sinica, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [17] Dong Jian-Wen, Chen Yi-Hang, Wang He-Zhou. Dispersion and localization of defect state in one-dimensional photonic crystal consisting of metamaterials. Acta Physica Sinica, 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [18] Zhang Hong-Wu, Wang Jin-Bao, Ye Hong-Fei, Wang Lei. Generalized parametric constitutive law for van der Waals force simulation and its applications in computation of nanotubes. Acta Physica Sinica, 2007, 56(3): 1422-1428. doi: 10.7498/aps.56.1422
    [19] Zhao Fang, Yuan Li-Bo. Defect states of homogeneity dislocation structures in two-dimensional phononic crystal. Acta Physica Sinica, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [20] WANG HUI, LI YONG-PING. AN EIGEN MATRIX METHOD FOR OBTAINING THE BAND STRUCTURE OF PHOTONIC CRYSTALS. Acta Physica Sinica, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
Metrics
  • Abstract views:  5205
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2021
  • Accepted Date:  16 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回