Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extraction of density of localized states in indium zinc oxide thin film transistor

Wang Jing Liu Yuan Liu Yu-Rong Wu Wei-Jing Luo Xin-Yue Liu Kai Li Bin En Yun-Fei

Citation:

Extraction of density of localized states in indium zinc oxide thin film transistor

Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Density of localized states (DOS) over the band-gap determines the electrical and instability characteristics in the indium zinc oxide thin film transistor (IZO TFT). In order to propose an accurate extraction method for DOS in the bulk region, low frequency noise and multi-frequency capacitance voltage characteristics are measured and analyzed in this paper. Firstly, the relationship between surface potential and gate voltage is extracted based on subthreshold I-V characteristics. The extraction results show that the surface potential increases with the increase of gate voltage in the sub-threshold region. When the Fermi level is close to the bottom of conduction band, the increase of surface potential should be saturated. Secondly, drain current noise power spectral densities in the IZO TFTs under different operation modes are measured. Based on carrier number fluctuation mechanism, the flat-band voltage noise power spectral density is extracted and localized state near IZO/SiO2 interface is then calculated. By considering the emission and trapping processes of carriers between localized states, the distribution of bulk trap density in the band-gap is extracted based on low frequency noise measurement results. The experimental results show an exponential tail state distribution in the band-gap while NTA is about 3.421020 cm-3eV-1 and TTA is about 135 K. Subsequently, contact resistances are then extracted by combining capacitance-voltage characteristics with I-V characteristics in the linear region. The extrinsic parasitic resistances at gate, source, drain are separated. By considering charges trapped in the localized states and free carriers, the distributions of deep states and tail states in the active layer of IZO TFT are extracted through multi-frequency capacitance-voltage characteristics. The experimental results also show an exponential deep state and tail state distribution in the band-gap while NDA is about 5.41015 cm-3eV-1, TDA is about 711 K, NTA is about 1.991020 cm-3eV-1, and TTA is about 183 K. The above two proposed extraction methods are compared and analyzed. The deviation between two extraction results may relate to the existence of neutral trap in the gate dielectric which is also an important source of low frequency noise in the IZO TFT.
      Corresponding author: Liu Yuan, liuyuan@ceprei.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574048, 61574062, 61204112) and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2014A030313656, 2015A030306002).
    [1]

    Lan L, Xiong N, Xiao P, Li M, Xu H, Yao R, Wen S, Peng J 2013 Appl. Phys Lett. 102 242102

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese) [李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 物理学报 62 108503]

    [3]

    Yu G, Wu C F, Lu H, Ren F F, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. Lett. 32 047302

    [4]

    Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512

    [5]

    Hsieh H H, Kamiya T, Nomura K, Hosono H, Wu C C 2008 Appl. Phys. Lett. 92 133503

    [6]

    Tang L F, Yu G, Lu H, Wu C F, Qian H M, Zhou D, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. B 24 088504

    [7]

    Liu Y R, Su J, Lai P T, Yao R H 2014 Chin. Phys. B 23 068501

    [8]

    Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Device Lett. 34 57

    [9]

    Park J H, Jeon K, Lee S, Kim S, Kim S, Song I, Kim C J, Park J, Park Y, Kim D M, Kim D H 2008 IEEE Electron Device Lett. 29 1292

    [10]

    Lee S, Park S, Kim S, Jeon Y, Jeon K, Park J H, Park J, Song I, Kim C J, Park Y, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 231

    [11]

    Bae H, Jun S, Jo C H, Choi H, Lee J, Kim Y H, Hwang S, Jeong H K, Hur I, Kim W, Yun D, Hong E, Seo H, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 1138

    [12]

    Kim Y, Bae M, Kim W, Kong D, Jeong H K, Kim H, Choi S, Kim D M, Kim D H 2012 IEEE Trans. Electron Devices 59 2689

    [13]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese) [徐飘荣, 强蕾, 姚若河 2015 物理学报 64 137101]

    [14]

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 物理学报 63 098503]

    [15]

    Kim S, Jeon Y, Lee J H, Ahn B D, Park S Y, Park J H, Kim J H, Park J, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 1236

    [16]

    Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506

    [17]

    Jun S, Bae H, Kim H, Lee J, Choi S J, Kim D H, Kim D M 2015 IEEE Electron Device Lett. 36 144

    [18]

    Lee S, Park H, Paine D C 2011 J. Appl. Phys. 109 063702

    [19]

    Bae H, Hur I, Shin J S, Yun D, Hong E, Jung K D, Park M S, Choi S, Lee W H, Uhm M, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 534

    [20]

    Shin S J, Bae H, Hong E, Jang J, Yun D, Lee J, Kim D H 2012 Solid-State Electron. 72 78

    [21]

    Luo D, Zhao M, Xu M, Li M, Chen Z, Wang L, Peng J 2014 ACS Appl. Mater. Interfaces 6 11318

    [22]

    Huang C Y, Zhang L R, Zhou L, Wu W J, Yao R H, Peng J B 2015 Displays 38 93

    [23]

    Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Device Lett. 34 1521

    [24]

    Servati P, Nathan A 2002 IEEE Trans. Electron Devices 49 812

    [25]

    Jevtic M M 1995 Microelectron. Reliab. 35 455

    [26]

    Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Devices 36 1773

    [27]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518

    [28]

    Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos 1999 J. Appl. Phys. 85 3934

    [29]

    Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367

    [30]

    Bae H, Kim S, Bae M, Shin J S, Kong D, Jung H, Jang J, Lee J, Kim D H, Kim D M 2011 IEEE Electron Device Lett. 32 761

    [31]

    Vogel E M, Henson W K, Richter C A, Suehle J S 2000 IEEE Trans. Electron Devices 47 601

  • [1]

    Lan L, Xiong N, Xiao P, Li M, Xu H, Yao R, Wen S, Peng J 2013 Appl. Phys Lett. 102 242102

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese) [李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 物理学报 62 108503]

    [3]

    Yu G, Wu C F, Lu H, Ren F F, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. Lett. 32 047302

    [4]

    Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512

    [5]

    Hsieh H H, Kamiya T, Nomura K, Hosono H, Wu C C 2008 Appl. Phys. Lett. 92 133503

    [6]

    Tang L F, Yu G, Lu H, Wu C F, Qian H M, Zhou D, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. B 24 088504

    [7]

    Liu Y R, Su J, Lai P T, Yao R H 2014 Chin. Phys. B 23 068501

    [8]

    Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Device Lett. 34 57

    [9]

    Park J H, Jeon K, Lee S, Kim S, Kim S, Song I, Kim C J, Park J, Park Y, Kim D M, Kim D H 2008 IEEE Electron Device Lett. 29 1292

    [10]

    Lee S, Park S, Kim S, Jeon Y, Jeon K, Park J H, Park J, Song I, Kim C J, Park Y, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 231

    [11]

    Bae H, Jun S, Jo C H, Choi H, Lee J, Kim Y H, Hwang S, Jeong H K, Hur I, Kim W, Yun D, Hong E, Seo H, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 1138

    [12]

    Kim Y, Bae M, Kim W, Kong D, Jeong H K, Kim H, Choi S, Kim D M, Kim D H 2012 IEEE Trans. Electron Devices 59 2689

    [13]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese) [徐飘荣, 强蕾, 姚若河 2015 物理学报 64 137101]

    [14]

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 物理学报 63 098503]

    [15]

    Kim S, Jeon Y, Lee J H, Ahn B D, Park S Y, Park J H, Kim J H, Park J, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 1236

    [16]

    Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506

    [17]

    Jun S, Bae H, Kim H, Lee J, Choi S J, Kim D H, Kim D M 2015 IEEE Electron Device Lett. 36 144

    [18]

    Lee S, Park H, Paine D C 2011 J. Appl. Phys. 109 063702

    [19]

    Bae H, Hur I, Shin J S, Yun D, Hong E, Jung K D, Park M S, Choi S, Lee W H, Uhm M, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 534

    [20]

    Shin S J, Bae H, Hong E, Jang J, Yun D, Lee J, Kim D H 2012 Solid-State Electron. 72 78

    [21]

    Luo D, Zhao M, Xu M, Li M, Chen Z, Wang L, Peng J 2014 ACS Appl. Mater. Interfaces 6 11318

    [22]

    Huang C Y, Zhang L R, Zhou L, Wu W J, Yao R H, Peng J B 2015 Displays 38 93

    [23]

    Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Device Lett. 34 1521

    [24]

    Servati P, Nathan A 2002 IEEE Trans. Electron Devices 49 812

    [25]

    Jevtic M M 1995 Microelectron. Reliab. 35 455

    [26]

    Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Devices 36 1773

    [27]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518

    [28]

    Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos 1999 J. Appl. Phys. 85 3934

    [29]

    Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367

    [30]

    Bae H, Kim S, Bae M, Shin J S, Kong D, Jung H, Jang J, Lee J, Kim D H, Kim D M 2011 IEEE Electron Device Lett. 32 761

    [31]

    Vogel E M, Henson W K, Richter C A, Suehle J S 2000 IEEE Trans. Electron Devices 47 601

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Yan Da-Wei, Tian Kui-Kui, Yan Xiao-Hong, Li Wei-Ran, Yu Dao-Xin, Li Jin-Xiao, Cao Yan-Rong, Gu Xiao-Feng. Forward current transport and noise behavior of GaN Schottky diodes. Acta Physica Sinica, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [3] Xu Qi, Sun Xiao-Wei, Song Ting, Wen Xiao-Dong, Liu Xi-Xuan, Wang Yi-Wen, Liu Zi-Jiang. Novel one-dimensional optomechanical crystal nanobeam with high optomechanical coupling rate under different defect states. Acta Physica Sinica, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [4] Zhu Yu-Bo, Xu Hua, Li Min, Xu Miao, Peng Jun-Biao. Analysis of low frequency noise characteristics of praseodymium doped indium gallium oxide thin film transistor. Acta Physica Sinica, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [5] Wang Dang-Hui, Xu Tian-Han. Low-frequency generation-recombination noise behaviors of blue/violet-light-emitting diode. Acta Physica Sinica, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [6] Liu Yuan, He Hong-Yu, Chen Rong-Sheng, Li Bin, En Yun-Fei, Chen Yi-Qiang. Low-frequency noise in hydrogenated amorphous silicon thin film transistor. Acta Physica Sinica, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [7] Xu Piao-Rong, Qiang Lei, Yao Ruo-He. A technique for extracting the density of states of the linear region in an amorphous InGaZnO thin film transistor. Acta Physica Sinica, 2015, 64(13): 137101. doi: 10.7498/aps.64.137101
    [8] Wang Dang-Hui, Xu Tian-Han, Wang Rong, Luo She-Ji, Yao Ting-Zhen. Research on emission transition mechanisms of InGaN/GaN multiple quantum well light-emitting diodes using low-frequency current noise. Acta Physica Sinica, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [9] Wang Kai, Liu Yuan, Chen Hai-Bo, Deng Wan-Ling, En Yun-Fei, Zhang Ping. Low frequency noise behaviors in the partially depleted silicon-on-insulator device. Acta Physica Sinica, 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [10] Liu Yuan, Wu Wei-Jing, Li Bin, En Yun-Fei, Wang Lei, Liu Yu-Rong. Analysis of low-frequency noise in the amorphous indium zinc oxide thin film transistors. Acta Physica Sinica, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [11] Liu Yu-Dong, Du Lei, Sun Peng, Chen Wen-Hao. The effect of electrostatic discharge on the I-V and low frequency noise characterization of Schottky barrier diodes. Acta Physica Sinica, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [12] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [13] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [14] Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen. Study of zinc tin oxide thin-film transistor. Acta Physica Sinica, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [15] Wang Xin-Hua, Pang Lei, Chen Xiao-Juan, Yuan Ting-Ting, Luo Wei-Jun, Zheng Ying-Kui, Wei Ke, Liu Xin-Yu. Investigation on trap by the gate fringecapacitance in GaN HEMT. Acta Physica Sinica, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [16] Yue Lei-Lei, Chen Yu, Fan Guang-Hui, He Jiao, Zhao De-Xun, Liu Ying-Kai. Influence of defect states on band gaps of the 4340 steel in epoxy in two-dimensional phononic crystal. Acta Physica Sinica, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [17] Xu Tian-Ning, Wu Hui-Zhen, Zhang Ying-Ying, Wang Xiong, Zhu Xia-Ming, Yuan Zi-Jian. Fabrication and performance of indium oxide based transparent thin film transistors. Acta Physica Sinica, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
    [18] Zhao Yan, Shi Wei-Hua, Jiang Yue-Jin. Effect of defects outside the centre on dispersive properties of photonic band gap guiding photonic crystal fibers. Acta Physica Sinica, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [19] Dong Jian-Wen, Chen Yi-Hang, Wang He-Zhou. Dispersion and localization of defect state in one-dimensional photonic crystal consisting of metamaterials. Acta Physica Sinica, 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [20] Zhao Fang, Yuan Li-Bo. Defect states of homogeneity dislocation structures in two-dimensional phononic crystal. Acta Physica Sinica, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
Metrics
  • Abstract views:  6337
  • PDF Downloads:  278
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2016
  • Accepted Date:  15 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回